Results 141 to 150 of about 15,576,713 (334)

ATP13A2 is involved in intracellular polyamine transport in lung epithelial cells

open access: yesFEBS Open Bio, EarlyView.
Spermidine transport in lung epithelial cells involves the polyamine transporter ATP13A2. Cell proliferation is associated with the upregulation of ATP13A2. Polyamines are present in all living cells and are implicated in various crucial cellular processes such as proliferation, apoptosis and autophagy.
Yuta Hatori   +8 more
wiley   +1 more source

TMC4 localizes to multiple taste cell types in the mouse taste papillae

open access: yesFEBS Open Bio, EarlyView.
Transmembrane channel‐like 4 (TMC4), a voltage‐dependent chloride channel, plays a critical role in amiloride‐insensitive salty taste transduction. TMC4 is broadly expressed in all mature taste cell types, suggesting a possible involvement of multiple cell types in this pathway.
Momo Murata   +6 more
wiley   +1 more source

Automated FRAP microscopy for high‐throughput analysis of protein dynamics in chromatin organization and transcription

open access: yesFEBS Open Bio, EarlyView.
RoboMic is an automated confocal microscopy pipeline for high‐throughput functional imaging in living cells. Demonstrated with fluorescence recovery after photobleaching (FRAP), it integrates AI‐driven nuclear segmentation, ROI selection, bleaching, and analysis.
Selçuk Yavuz   +6 more
wiley   +1 more source

KLK7 overexpression promotes an aggressive phenotype and facilitates peritoneal dissemination in colorectal cancer cells

open access: yesFEBS Open Bio, EarlyView.
KLK7, a tissue kallikrein‐related peptidase, is elevated in advanced colorectal cancer and associated with shorter survival. High KLK7 levels in ascites correlate with peritoneal metastasis. In mice, KLK7 overexpression increases metastasis. In vitro, KLK7 enhances cancer cell proliferation, migration, adhesion, and spheroid formation, driving ...
Yosr Z. Haffani   +6 more
wiley   +1 more source

Mycobacterial cell division arrest and smooth‐to‐rough envelope transition using CRISPRi‐mediated genetic repression systems

open access: yesFEBS Open Bio, EarlyView.
CRISPRI‐mediated gene silencing and phenotypic exploration in nontuberculous mycobacteria. In this Research Protocol, we describe approaches to control, monitor, and quantitatively assess CRISPRI‐mediated gene silencing in M. smegmatis and M. abscessus model organisms.
Vanessa Point   +7 more
wiley   +1 more source

Enzymatic degradation of biopolymers in amorphous and molten states: mechanisms and applications

open access: yesFEBS Open Bio, EarlyView.
This review explains how polymer morphology and thermal state shape enzymatic degradation pathways, comparing amorphous and molten biopolymer structures. By integrating structure–reactivity principles with insights from thermodynamics and enzyme engineering, it highlights mechanisms that enable efficient polymer breakdown.
Anđela Pustak, Aleksandra Maršavelski
wiley   +1 more source

Tumor‐stromal crosstalk and macrophage enrichment are associated with chemotherapy response in bladder cancer

open access: yesFEBS Open Bio, EarlyView.
Chemoresistance in bladder cancer: Macrophage recruitment associated with CXCL1, CXCL5 and CXCL8 expression is characteristic of Gemcitabine/Cisplatin (Gem/Cis) Non‐Responder tumors (right side) while Responder tumors did not show substantial tumor‐stromal crosstalk (left side). All biological icons are attributed to Bioicons: carcinoma, cancerous‐cell‐
Sophie Leypold   +11 more
wiley   +1 more source

Understanding bio‐based polymers: A study of origins, properties, biodegradation and their impact on health and the environment

open access: yesFEBS Open Bio, EarlyView.
This review provides an overview of bio‐based polymer sources, their unique functional properties and their environmental impact, and addresses their role as sustainable alternatives. It discusses end‐of‐life options, including composting and anaerobic digestion for renewable energy.
Sabina Kolbl Repinc   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy