Results 241 to 250 of about 55,768 (280)

Multifunctional Nano Immunostimulant: Overcoming Immunosuppressive Microenvironment for Antitumor Immunotherapy

open access: yesAdvanced Science, EarlyView.
A multifunctional nano immunostimulant is first proposed for efficient tumor immunotherapy. The ER targeted ability, superior ROS production, efficient GSH consumption, coupled with the HIF suppression, jointly arouses ICD/ferroptosis pathways to realize efficient tumor immunotherapy.
Guanhong Guo   +14 more
wiley   +1 more source

Thermally Gated Dual‐Cascade Nanozyme for Enhanced Mild‐Temperature Photothermal Therapy

open access: yesAdvanced Science, EarlyView.
A thermo‐responsive cascade nanozyme (Ru‐GOx‐PNN) synergistically enhances mild photothermal therapy by dual suppression of HSP70 through ROS‐induced lipid peroxidation and ATP depletion. This intelligent system effectively overcomes thermotolerance and amplifies apoptosis, offering a safe and precise strategy for tumor treatment.
Shuyu Wang   +7 more
wiley   +1 more source

Rescuing Mitochondrial Dysfunction in Macrophages Prevents Osteonecrosis of the Jaw in Anti‐Resorptive Therapy

open access: yesAdvanced Science, EarlyView.
Schematic model showing the suggested mechanism that ZA induces classical activation of macrophages by impairing mitochondrial biofunction and inhibiting mitochondrial clearance to contribute to the pathological process of BRONJ. RAPA‐loaded nanoparticles ZDPR has shown potential in alleviating BRONJ lesions as well as treating osteoporosis or ...
Hang Zhang   +10 more
wiley   +1 more source

Biomimetic Nanomedicine for Senescence‐Modulated Immune Activation Enhances Immunotherapy Efficacy in Hepatocellular Carcinoma

open access: yesAdvanced Science, EarlyView.
A multifunctional mPDZM nanoplatform is developed in this study. mPDZM integrates chemotherapy‐induced senescence, selective senolysis, and STING‐mediated immune activation. mPDZM effectively clears senescent tumor cells, remodels the tumor immune microenvironment, and enhances antitumor T‐cell responses.
Shiji Fang   +17 more
wiley   +1 more source

Rod‐Shaped Nanotherapeutics Alleviate Rheumatoid Arthritis by Precisely Disrupting Platelet‐Mediated Pathological Crosstalk via a Morphology‐Dependent Manner

open access: yesAdvanced Science, EarlyView.
Owing to the margination effect, rod‐shaped nanoparticles exhibit markedly enhanced co‐localization with endothelial‐adherent platelets (PLTs) under dynamic blood flow. When internalized by PLTs, rod‐shaped PNR@Res inhibit FAK and PI3K/AKT signaling in a morphology‐dependent manner, thereby disrupting their pathological crosstalk with various ...
Bin Zhang   +6 more
wiley   +1 more source

Biomimetic Organic Nanozyme as Tumor Vaccines for Targeted Suppression of Ammonia‐Induced T Lymphocyte Death to Augment Breast Cancer Immunotherapy

open access: yesAdvanced Science, EarlyView.
The organic nanozyme IR‐IHpd, which has NIR‐PDT and POD‐like activity, is designed for continuous ROS generation. It is co‐encapsulated with CB‐839 and coated with DC membranes to simultaneously target tumors and T cells. Under NIR irradiation, immunogenic cell death is activated. Concurrently, CB‐839 suppresses ammonia‐induced T lymphocyte death (AITD)
Meng Suo   +7 more
wiley   +1 more source

Iron Oxide Nanozyme as Reactive Oxygen and Nitrogen Species Scavenger to Regulate Microglial Homeostasis in Stroke

open access: yesAdvanced Science, EarlyView.
6 nm iron oxide nanoparticles (IONP6) exhibit enzyme‐like activities that scavenge reactive oxygen and nitrogen species (RONS), including nitric oxide (NO). In stroke models, IONP6 promotes microglial polarization toward the M2 phenotype, reduces neuroinflammation, and improves neurological outcomes, offering a promising drug‐free approach to mitigate ...
Yilin Qi   +12 more
wiley   +1 more source

A Novel Tyrosine Kinase Axis in Innate Immune Signaling. [PDF]

open access: yesViruses
Das S   +3 more
europepmc   +1 more source

Leucine‐Dependent SLC7A5–PGAM5 Interaction Promotes Advanced Atherosclerosis Through Hindering Mitochondrial Function of Macrophages

open access: yesAdvanced Science, EarlyView.
Higher plasma leucine is associated with increased risk of new‐onset myocardial infarction. Leucine deprivation alleviates advanced atherosclerosis in mice. Tumor‐induced leucine deprivation reprograms macrophage metabolism and increases CD5Lhi macrophages in mouse plaques. Mechanistically, leucine deficiency reduced SLC7A5‐PGAM5 binding in macrophages,
Shan Zhong   +22 more
wiley   +1 more source

Chaperone‐Mediated Autophagic Degradation of USP9X in Macrophages Exacerbates Postmyocardial Infarction Inflammation and Cardiac Dysfunction

open access: yesAdvanced Science, EarlyView.
This study demonstrates that inflammatory stimuli induce the acetylation‐triggered, chaperone‐mediated autophagic degradation of ubiquitin‐specific peptidase 9 X‐linked (USP9X) in macrophages. USP9X acts as a macrophage “inflammation switch” after myocardial infarction (MI). USP9X loss destabilizes tumor necrosis factor receptor‐associated factor (TRAF)
Biqing Wang   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy