Results 151 to 160 of about 174,553 (360)
Structural Diversity on Copper(I) Schiff Base Complexes
Aliakbar Dehno
openalex +2 more sources
This study unlocks the immense potential of COF@polymer nanocomposites as a multifunctional therapeutic platform for targeted drug delivery in diabetic cardiomyopathy. Abstract Diabetic cardiomyopathy, a major complication of diabetes, is strongly associated with elevated levels of glycated hemoglobin (HbA1c) and reactive oxygen species (ROS). However,
Jing Xue +13 more
wiley +1 more source
Scars exhibit vascular abnormal alterations, including upregulated NRP1 expression in endothelial cells, increased vascular density and branching, compromised vessel wall integrity, and incomplete pericyte coverage. Therapeutic targeting of NRP1 through hydrogel spray delivery offers a promising approach to normalize aberrant vasculature and prevent ...
Yu Wang +11 more
wiley +1 more source
Nowadays, the use of many organic solvents poses a serious threat to the atmosphere due to the release of toxic by-products. Therefore, the use of solvent-free green catalysts to solve this problem has brought about a significant change in the field of ...
C. Krishna Moorthy +3 more
doaj +1 more source
A microenvironment self‐adaptive nanoarmor is developed to effectively address the adhesion‐ and colonization‐related challenges posed by multiple physiological and pathological characteristics in the intestine. L. plantarum@MPN@CS showed significant therapeutic potential in treating Parkinson's disease (PD), a model for extraintestinal disorders, as ...
Limeng Zhu +6 more
wiley +1 more source
This study successfully engineered vascularized liver organoids (3HLOs) by co‐culturing human reprogrammed hepatocyte‐like cells (hrHLs) with human umbilical vein endothelial cells (HUVECs) and human umbilical mesenchymal stem cells (HUMSCs). Upon implantation, the 3HLOs established functional vascular anastomosis with the host circulation and ...
Kangdi Yang +13 more
wiley +1 more source
Novel Pt(
Jungang Deng +8 more
openalex +1 more source
Quasi‐solid‐state calcium‐ion batteries (QSSCIBs) employing redox‐active covalent organic frameworks (COFs) based electrolytes are developed. The COFs’ crystalline porous structures, featuring aligned carbonyl groups, enabled high Ca2⁺ conductivity, supported by molecular dynamics simulations of the ion transport mechanism.
Zhuoyu Yin +7 more
wiley +1 more source

