Results 131 to 140 of about 541,956 (367)

Muscle‐Derived Small Extracellular Vesicles Mediate Exercise‐Induced Cognitive Protection in Chronic Cerebral Hypoperfusion

open access: yesAdvanced Science, EarlyView.
sEVs have a critical role in orchestrating interorgan crosstalk and mediating exercise‐induced therapeutic effects. Lin et al. demonstrates that sEVs miR‐17/20a‐5p mediates the muscle‐brain crosstalk and emphasizes the central role of mTOR signaling in executing molecular programs that can protect brain health in response to exercise. Abstract Physical
Huawei Lin   +21 more
wiley   +1 more source

The Reconstruction of Peripheral Auditory Circuit: Recent Advances and Future Challenges

open access: yesAdvanced Science, EarlyView.
This paper summarizes the potential of biomaterials, stem cells, and gene editing technologies in the regeneration of inner ear hair cells, spiral ganglion neurons, and inner ear organoids. Challenges and potential developments are discussed and explored.
Zhe Li   +3 more
wiley   +1 more source

Transmigration of Melanoma Cells through the Blood-Brain Barrier: Role of Endothelial Tight Junctions and Melanoma-Released Serine Proteases

open access: yesPLoS ONE, 2011
Malignant melanoma represents the third common cause of brain metastasis, having the highest propensity to metastasize to the brain of all primary neoplasms in adults.
Csilla Fazakas   +11 more
semanticscholar   +1 more source

Cryptic Splicing of GAP43 mRNA is a Novel Hallmark of TDP‐43‐Associated ALS and AD

open access: yesAdvanced Science, EarlyView.
TDP‐43 dysfunction disrupts RNA processing, inducing cryptic exon 4a1 inclusion in GAP43 and reducing its protein levels. This aberrant splicing impairs axonal regeneration and contributes to neurodegeneration in ALS and AD. RNA‐seq of patient brains reveals GAP43 downregulation and 4a1 upregulation, identifying cryptic exon 4a1 as a potential ...
Mingming Yang   +9 more
wiley   +1 more source

IncRNA‐ZFAS1, an Emerging Gate‐Keeper in DNA Damage‐Dependent Transcriptional Regulation

open access: yesAdvanced Science, EarlyView.
LncZFAS1 plays a crucial role during DNA damage response in mammalian cells. Loss of lncZFAS1 results in deficient DNA lesion removal and reduced cell viability. Mechanistically, lncZFAS1 modulates RNAPII phosphorylation and transcription and thereby promotes both GG‐NER and TC‐NER upon UV damage.
Jiena Liu   +10 more
wiley   +1 more source

Corin: a serine protease [PDF]

open access: yesKidney International, 2011
Shen, Jianzhong, Wu, Qingyu
openaire   +1 more source

DNA‐PKcs‐Driven YAP1 Phosphorylation and Nuclear Translocation: a Key Regulator of Ferroptosis in Hyperglycemia‐Induced Cardiac Dysfunction in Type 1 Diabetes

open access: yesAdvanced Science, EarlyView.
In the context of chronic hyperglycemia, a DDR is initiated, leading to the pathological activation of DNA‐PKcs in the diabetic heart. This activated DNA‐PKcs directly interacts with and phosphorylates YAP1 at Thr226, thereby increasing the nuclear expression of YAP1.
Junyan Wang   +10 more
wiley   +1 more source

Tailor-made inflammation: how neutrophil serine proteases modulate the inflammatory response

open access: yesJournal of molecular medicine, 2010
Neutrophil granulocytes are important mediators of innate immunity, but also participate in the pathogenesis of (auto)inflammatory diseases. Neutrophils express a specific set of proteolytic enzymes, the neutrophil serine proteases (NSPs), which are ...
K. Kessenbrock, T. Dau, D. Jenne
semanticscholar   +1 more source

LincNEAT1 Encoded‐NEAT1‐31 Promotes Phagocytosis by Directly Activating the Aurora‐A–PI3K–AKT Pathway

open access: yesAdvanced Science, EarlyView.
LincNEAT1 Encoded‐NEAT1‐31 micropeptide directly binds with Aurora‐A and enhanced AKT pathways to pormotes phagocytosis against multi cancer cells. Abstract Macrophages play vital roles in innate and adaptive immunity, and their essential functions are mediated by phagocytosis and antigen presentation.
Jie Li   +8 more
wiley   +1 more source

The Nuclear Localization of ACLY Guards Early Embryo Development Through Recruiting P300 and HAT1 to Promote Histone Acetylation and Transcription

open access: yesAdvanced Science, EarlyView.
ACLY is vital for early embryo development. IGF‐1 activates AKT to phosphorylate ACLY, driving its nuclear localization and recruitment of HATs (P300/HAT1), boosting acetyl‐CoA production and histone acetylation for transcriptional activation. Conversely, ACLY deficiency (via knockdown, knockout, or AKT inhibition) reduces nuclear acetyl‐CoA, disrupts ...
Yerong Ma   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy