Results 41 to 50 of about 174,219 (285)

Synchrotron Radiation for Quantum Technology

open access: yesAdvanced Functional Materials, EarlyView.
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader   +10 more
wiley   +1 more source

BERTopic for Enhanced Idea Management and Topic Generation in Brainstorming Sessions

open access: yesInformation
Brainstorming is an important part of the design thinking process since it encourages creativity and innovation through bringing together diverse viewpoints.
Asma Cheddak   +4 more
doaj   +1 more source

Study of dielectric strength of (Blend SiC) nanocomposites [PDF]

open access: yesمجلة جامعة الانبار للعلوم الصرفة, 2018
A nanocomposite materials were prepared based on polymeric blend[ 80% Ep + 20% UPE], supported by nanosilicon Carbide (SiC) , of crystalline size (≈ 50 nm) with weight percentages[ 2, 4 and 6 Wt% ].
Jaafar K. Ch. Al-Suwaydawei   +1 more
doaj   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Flux‐Regulated Crystallization of Perovskites Using Machine Learning‐Predicted Solvent Evaporation Rates for X‐Ray Detectors

open access: yesAdvanced Functional Materials, EarlyView.
By integrating machine learning into flux‐regulated crystallization (FRC), accurate prediction of solvent evaporation rates in real time, improving crystallization control and reducing crystal growth variability by over threefold, is achieved. This enhances the reproducibility and quality of perovskite single crystals, leading to reproducible ...
Tatiane Pretto   +8 more
wiley   +1 more source

Photoluminescent SiC Tetrapods

open access: yesNano Letters, 2013
Recently, significant research efforts have been made to develop complex nanostructures to provide more sophisticated control over the optical and electronic properties of nanomaterials. However, there are only a handful of semiconductors which allow control over their geometry via simple chemical processes.
Magyar, Andrew P.   +3 more
openaire   +3 more sources

Synthesis and Electronic Structure of the Fractionally Occupied Double Perovskite EuTa2O6 with Ordered Europium Vacancies

open access: yesAdvanced Functional Materials, EarlyView.
Two‐dimensional electronic states are the foundation of modern semiconductor technology. Here, we report molecular‐beam epitaxy growth of fractional double perovskite, EuTa2O6. Reciprocal space mapping and transmission electron microscopy confirm a layered ordering of A‐site cations.
Tobias Schwaigert   +15 more
wiley   +1 more source

Simulation and Optimization Design of SiC-Based PN Betavoltaic Microbattery Using Tritium Source

open access: yesCrystals, 2020
In this paper, the Monte Carlo method and numerical model are used to build the electrical model of a SiC-based betavoltaic microbattery using a 3H source, and the influences of structural parameters and the surface recombination effect on the output ...
Zhang Lin
doaj   +1 more source

Emerging 2D Materials and Their Hybrid Nanostructures for Label‐Free Optical Biosensing: Recent Progress and Outlook

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights recent advances in label‐free optical biosensors based on 2D materials and rationally designed mixed‐dimensional nanohybrids, emphasizing their synergistic effects and novel functionalities. It also discusses multifunctional sensing platforms and the integration of machine learning for intelligent data analysis.
Xinyi Li, Yonghao Fu, Yuehe Lin, Dan Du
wiley   +1 more source

Ultrahigh Strength with Suppressed Flow Instability at Liquid Helium Temperature via Coherent Nanoprecipitation in a Medium‐Entropy Alloy

open access: yesAdvanced Functional Materials, EarlyView.
It is demonstrated that severe lattice distortion and coherent nanoprecipitates overcome the strength–ductility dilemma and mitigate discontinuous plastic flow (DPF) at 4.2 K. Such microstructural design enhances both thermal and athermal stress components, leading to exceptional mechanical performance.
Min Young Sung   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy