Results 131 to 140 of about 281,837 (328)

Modeling the Contributions of the Exocytotic Machinery and Receptor Desensitization to Short- and Long-Term Plasticity of Synapses Between Neocortical Pyramidal Neurons [PDF]

open access: yes, 2001
Short-term synaptic depression (STD) refers to the progressive decrease in synaptic efficacy during a spike train. This decrease may be explained in terms of presynaptic and postsynaptic processes, such as a decrease in the probability of transmitter ...
Cohen, Michael, Okatan, Murat
core   +1 more source

Surface Diffusion in SnTe‐PbTe Monolayer Lateral Heterostructures

open access: yesAdvanced Functional Materials, EarlyView.
The lateral heterostructures between 2D materials often suffer from the interdiffusion at the interfaces. Here, a surface diffusion mechanism is found to be dominating at the interfaces between semiconducting SnTe and PbTe monolayers. Atomically sharp interfaces can be achieved by suppressing this diffusion process. ABSTRACT The construction of complex
Jing‐Rong Ji   +9 more
wiley   +1 more source

Solving the binding problem: cellular adhesive molecules and their control of the cortical quantum entangled network [PDF]

open access: yes, 2003
Quantum entanglement is shown to be the only acceptable physical solution to the binding problem. The biological basis of interneuronal entanglement is described in the frames of the beta-neurexin-neuroligin model developed by Georgiev (2002) and is ...
Georgiev, Danko
core  

A Programmable Semiconductor Containing Active Molecular Photoswitches Located in the Crystal's Volume Phase

open access: yesAdvanced Functional Materials, EarlyView.
A novel approach for the design of functional semiconductors is presented, which utilizes the excellent optoelectronic properties of layered hybrid perovskites and the possibility to introduce a molecular photoswitch as the organic spacer. This concept is successfully demonstrated on a coumarin‐based system with the possibility to change the bandgap ...
Oliver Treske   +4 more
wiley   +1 more source

Silent Synapses Speak Up [PDF]

open access: yesNeuron, 1997
Malenka, Robert C, Nicoll, Roger A
openaire   +2 more sources

High Entropy Wide‐Bandgap Borates with Broadband Luminescence and Large Nonlinear Optical properties

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy rare‐earth borates exhibit excellent nonlinear optical and broadband luminescence properties arising from multi‐component doping, chemical disorder, increased configurational entropy, and increased lattice and electronic anharmonicity. This formulation enabled us to obtain a large, environmentally stable single crystal with 3X higher laser‐
Saugata Sarker   +14 more
wiley   +1 more source

Designing Asymmetric Memristive Behavior in Proton Mixed Conductors for Neuromorphic Applications

open access: yesAdvanced Functional Materials, EarlyView.
Protonic devices that couple ionic and electronic transport are demonstrated as bioinspired neuromorphic elements. The devices exhibit rubber‐like asymmetric memristive behavior with slow voltage‐driven conductance increase and rapid relaxation, enabling simplified read–write operation.
Nada H. A. Besisa   +6 more
wiley   +1 more source

Vesicular glutamatergic transmission in noise-induced loss and repair of cochlear ribbon synapses [PDF]

open access: yes, 2019
Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner
Carlquist, Jason   +12 more
core   +1 more source

Hypoxia-Induced Neonatal Seizures Diminish Silent Synapses and Long-Term Potentiation in Hippocampal CA1 Neurons [PDF]

open access: bronze, 2011
Chengwen Zhou   +3 more
openalex   +1 more source

Conductance‐Dependent Photoresponse in a Dynamic SrTiO3 Memristor for Biorealistic Computing

open access: yesAdvanced Functional Materials, EarlyView.
A nanoscale SrTiO3 memristor is shown to exhibit dynamic synaptic behavior through the interaction of local electrical and global optical signals. Its photoresponse depends quantitatively on the conductance state, which evolves and decays over tunable timescales, enabling ultralow‐power, biorealistic learning mechanisms for advanced in‐memory and ...
Christoph Weilenmann   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy