Results 21 to 30 of about 178,882 (199)

Novel Biologically Active Glass Fiber Functionalized Using Magnesium Phosphate Cement Promotes Bone and Vascular Regeneration

open access: yesAdvanced Biology, EarlyView.
In this study, a new type of bioactive glass fiber ‐based composite magnesium phosphate bone cement is prepared and verified that its mechanical strength and biological properties. In addition, the cement may have played a biologically active role in the Notch and HIF signaling pathways.
Yuzheng Lu   +12 more
wiley   +1 more source

Ultra‐Shallow Flat Heat Waves on Low Thermal Conductivity Flexible Polyimide Substrate for Millisecond Thermal Analysis of Materials and Bioelectronic Applications

open access: yesAdvanced Engineering Materials, EarlyView.
An electronic system is presented consisting of a silver thin‐film electrode on a polyimide substrate working both as a heating element and a resistive temperature sensor, generating millisecond heat pulses with very fast heating and cooling rates and a flat peak temperature with a tunable duration.
Bahman K. Boroujeni   +5 more
wiley   +1 more source

Analysis of Temperature and Stress Distribution on the Bond Properties of Hybrid Tailored Formed Components

open access: yesAdvanced Engineering Materials, EarlyView.
Hybrid materials enable high‐performance components but are challenging to process. This study explores an inductive heating concept with spray cooling for steel–aluminum specimens in a two‐step process including friction welding and cup backward extrusion.
Armin Piwek   +7 more
wiley   +1 more source

Advances in Hybrid Icing and Frosting Protection Strategies for Optics, Lens, and Photonics in Cold Environments Using Thin‐Film Acoustic Waves

open access: yesAdvanced Engineering Materials, EarlyView.
This article provides a comprehensive overview of fundamentals and recent advances of transparent thin‐film surface acoustic wave technologies on glass substrates for monitoring and prevention/elimination of fog, ice, and frost. Fogging, icing, or frosting on optical lenses, optics/photonics, windshields, vehicle/airplane windows, and solar panel ...
Hui Ling Ong   +11 more
wiley   +1 more source

Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials

open access: yesAdvanced Engineering Materials, EarlyView.
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani   +4 more
wiley   +1 more source

On the Rigidity and Mechanical Behavior of Triply Periodic Minimal Surfaces‐Based Lattices: Insights from Extensive Experiments and Simulations

open access: yesAdvanced Engineering Materials, EarlyView.
This study examines the mechanical properties of triply periodic minimal surfaces (TPMS)‐based lattices, analyzing 36 architectures in elastic and plastic regimes. It evaluates the applicability of beam‐based scaling laws to TPMS lattices. Rigidity arises from the alignment of members with the load direction and solid regions preventing rotation.
Lucía Doyle   +2 more
wiley   +1 more source

Recent Progress on 2D‐Material‐Based Smart Textiles: Materials, Methods, and Multifunctionality

open access: yesAdvanced Engineering Materials, EarlyView.
Advancements in 2D‐material‐integrated smart textiles are reviewed, with a focus on materials, fabrication methods, and multifunctional applications, including energy harvesting, monitoring, EMI shielding, energy storage, and thermal management. The discussion addresses key challenges and provides insights into the future development of next‐generation
Yong Choi   +5 more
wiley   +1 more source

Scalable Fabrication of Height‐Variable Microstructures with a Revised Wetting Model

open access: yesAdvanced Engineering Materials, EarlyView.
Height‐variable microstructures are fabricated using a scalable CO2 laser machining approach, enabling precise control of wettability through structural gradients. Classical wetting models fail to capture height‐induced effects, necessitating a revised theoretical framework.
Prabuddha De Saram   +2 more
wiley   +1 more source

Scalable Manufacturing of Radiation‐Tolerant Potentiometric Electrodes: A Systematic Transition from Laboratory to Semiautomated Fabrication

open access: yesAdvanced Engineering Materials, EarlyView.
Laboratory protocols for producing thin‐film pH electrodes for sterilized single‐use technologies have been successfully developed into a semiautomated workflow, with higher throughput and precision of membrane thickness. Accuracies are within 0.05 pH units versus ground truth, and uncertainty analysis reveals the largest sources of error to be derived
Bingyuan Zhao   +4 more
wiley   +1 more source

Mechanically Adaptable High‐Performance p(SBMA‐MMA) Copolymer Hydrogel with Iron (II/III) Perchlorate for Wearable Thermocell Applications

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
A high‐performance n‐type element for quasi‐solid‐state thermocells has been introduced, outperforming conventional p‐type elements and showcasing the potential to harness body heat as an energy source or power embedded sensors. This advance significantly contributes to waste thermal energy harvesting and wearable technology, paving the way for self ...
Gilyong Shin   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy