Results 181 to 190 of about 171,719 (347)

Advanced Human Immune Cell‐Organoid Co‐Cultures for Functional Testing of Cancer Nanovaccines

open access: yesAdvanced Science, EarlyView.
Pancreatic ductal adenocarcinoma remains difficult to treat. We establish an organoid–immune co‐culture using patient‐derived organoids and matched T‐cells to assess cancer vaccines. A mesothelin‐targeted nanovaccine activates antigen‐specific T‐cells, increases IFN‐γ, and targets MSLN+ organoids.
Nathalia Ferreira   +18 more
wiley   +1 more source

cDC1 Subtype‐Specific In Vivo Targeting of Liposomes

open access: yesAdvanced Science, EarlyView.
Dendritic cells, particularly the cDC1 subtype, offer a promising target for drug delivery via liposomes due to their pivotal role in immune regulation, allowing for amplified therapeutic responses. Herein, we show an integration of physicochemical characterization and cell experiments to achieve effective in vivo cDC1 targeting through anti‐CLEC9A ...
Maximilian Schaaf   +11 more
wiley   +1 more source

Targeting DNA‐LNPs to Endothelial Cells Improves Expression Magnitude, Duration, and Specificity

open access: yesAdvanced Science, EarlyView.
Attaching antibodies against endothelial cell surface proteins redirects the delivery and expression of DNA‐lipid nanoparticles to organs of interest. Our targeted nanoparticles enable organ‐selective DNA expression in the endothelium of the lungs, brain, or spleen, providing a therapeutic platform for dozens of endothelial‐centric diseases.
Nicolas Marzolini   +24 more
wiley   +1 more source

Effect of Sodium Azide on Quantitative and Qualitative Stem Traits in the M2 Generation of Ethiopian Sesame (Sesamum indicum L.) Genotypes. [PDF]

open access: yesScientificWorldJournal, 2021
Weldemichael MY   +14 more
europepmc   +1 more source

Sabatier‐Adjusted d‐Band Centers of Scalable Asymmetric Iron Sites toward Dynamic Nonradical Network for Fast Mineralization with Low‐Amount Oxidant

open access: yesAdvanced Science, EarlyView.
Asymmetric iron single‐atom catalysts with Sabatier‐adjusted d‐band centers overcome the inherent limitations of peroxymonosulfate (PMS) activation by establishing a synergistic nonradical pathway network, achieving exceptional pollutant mineralization (≈85%) at only one‐tenth conventional PMS dosage.
Yue Chen   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy