Results 171 to 180 of about 646,561 (358)

Artificial Symbiosis for Bulk Production of Bacterial Cellulose Composites

open access: yesAdvanced Materials, EarlyView.
Co‐cultivation of the cellulose‐producing bacterium with the microalga enables bulk formation of bacterial cellulose under static incubation, with photosynthetically active oxygen‐generating sites throughout the medium. This symbiotic platform supports 3D cellulosic constructs with geometries dictated by the vessel shape.
Kui Yu   +7 more
wiley   +1 more source

Decoupling Dynamics and Crosslink Stability in Supramolecular Hydrogels Using Associative Exchange

open access: yesAdvanced Materials, EarlyView.
How does reorganization impact the stability of supramolecular hydrogels? In contrast to dissociative crosslink exchange, implementing associative exchange in macroscale DNA hydrogels enables decoupling of reorganization dynamics from thermal and mechanical stability.
Pierre Le Bourdonnec   +4 more
wiley   +1 more source

Energy‐Efficient, Sustainable Cascade Glucose Electrooxidation into Glucaric Acid

open access: yesAdvanced Materials, EarlyView.
This study presents a tandem system that efficiently converts glucose into glucaric acid while generating renewable electricity. By decoupling the oxidation process into two cascaded steps, the system achieves an overall 90% Faradaic efficiency and 80% conversion efficiency at ∼0.6 VRHE, significantly reducing energy consumption compared to traditional
Mingming He   +15 more
wiley   +1 more source

Directed Functionalization of Recombinant Spider Silk Nonwoven Membranes with Antibodies Using Non‐Canonical Amino Acids

open access: yesAdvanced Materials, EarlyView.
A recombinant spider silk protein was functionalized by incorporating genetically encoded bio‐orthogonal reactive azido‐groups. The azido‐functionalized proteins were produced in a scalable biotechnological process, and particles, films, as well as nanofibers were established as anchorage for fully functional antibodies via site‐specific bio‐orthogonal
Claudia Lacombe   +4 more
wiley   +1 more source

Advancements in TLP Bonding for Power Electronics Die‐Attach Applications

open access: yesAdvanced Materials Technologies, EarlyView.
Transient Liquid Phase (TLP) bonding is gaining traction as a lead‐free die‐attach technology in power electronics packaging. This review examines the state of TLP bonding, its key elements, reliability aspects, and practical limitations. This review also highlights emerging trends, such as nanostructured interfaces, that may improve scalability of TLP
Fatin Battal   +4 more
wiley   +1 more source

Roadmap to Precision 3D Printing of Cellulose: Rheology‐Guided Formulation, Fidelity Assessment, and Application Horizons

open access: yesAdvanced Materials Technologies, EarlyView.
This critical review presents a comprehensive roadmap for the precision 3D printing of cellulose. Quantitative correlations link ink formulation and rheological properties to print fidelity and final material performance. This framework guides the development of advanced functional materials, from biomedical scaffolds to electromagnetic shielding ...
Majed Amini   +3 more
wiley   +1 more source

A Review on Microreactor Design for Effective Fischer–Tropsch Process Intensification

open access: yesAdvanced Materials Technologies, EarlyView.
Design strategies for effective Fischer–Tropsch process intensification are summarized based on experimental and simulation experiences. Recommendations for catalyst loading of packed‐bed and wash‐coated microchannel, microtube, micromonolith, and microstructured reactors are discussed.
Yangjun Wei   +5 more
wiley   +1 more source

4D Printing of Multimaterial Flexible Magneto‐Active Polymers

open access: yesAdvanced Materials Technologies, EarlyView.
Magneto‐active polymers are 3D‐printed with tunable mechanical and magnetic properties using both superparamagnetic and hard ferromagnetic fillers. Nano‐CT imaging reveals the spatial distribution of particles within the matrix. Programmable magnetization patterns and soft, flexible architectures enable responsive actuation, offering exciting ...
Naji Tarabay   +6 more
wiley   +1 more source

Ultra‐Thin Soft Pneumatic Actuation for Minimally Invasive Neural Interfacing

open access: yesAdvanced Materials Technologies, EarlyView.
Parylene C is a common polymer in bioelectronics, favored for its biological and chemical inertness. However, this makes bonding layers of Parylene C together very challenging. Here it is a laser to selectively weld layers of Parylene C to create high‐pressure fluidic actuation devices.
Lawrence Coles   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy