Results 61 to 70 of about 54,040 (257)
Exploring the photocatalytic reverse water–gas shift (RWGS) reaction on doped SrTiO3 nanoparticle films, reveals that normalizing catalytic rates by the catalyst's specific surface area (SSA) disentangled surface area effects from the catalyst's intrinsic material properties.
Dikshita Bhattacharyya +6 more
wiley +1 more source
Electrically Tunable On‐Chip Topological Photonics with Integrated Carbon Nanotubes
This work demonstrates electrically tunable on‐chip topological THz devices by integrating 2D carbon nanotube (CNT) sheets with valley‐Hall photonic crystals, enabling broadband transmission modulation (71% modulation depth) and tunable narrowband filtering (0.54 GHz shift) through electrically induced thermal tuning. This advancement paves the way for
Jifan Yin +7 more
wiley +1 more source
Brillouin optical correlation-domain technologies are reviewed as “fiber optic nerve systems” for the health monitoring of large structures such as buildings, bridges, and aircraft bodies.
Kazuo Hotate
doaj +1 more source
Compact Brillouin devices through hybrid integration on Silicon
A range of unique capabilities in optical and microwave signal processing have been demonstrated using stimulated Brillouin scattering. The desire to harness Brillouin scattering in mass manufacturable integrated circuits has led to a focus on silicon ...
Casas-Bedoya, A. +11 more
core +1 more source
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Molecular Cross‐Linking of MXenes: Tunable Interfaces and Chemiresistive Sensing
In this study, Ti3C2Tx MXenes are initially functionalized using oleylamine ligands to form stable dispersions in an organic solvent. Subsequently ligand exchange with α,ω‐diaminoalkanes enables cross‐linking, along with precise tuning of interfaces. This structural control translates into tunable charge transport and responsive VOC sensing, showing ...
Yudhajit Bhattacharjee +12 more
wiley +1 more source
We introduce a finite-difference frequency-domain algorithm for coupled acousto-optic simulations. First-principles acousto-optic simulation in time domain has been challenging due to the fact that the acoustic and optical frequencies differ by many ...
Yu Shi, Alexander Cerjan, Shanhui Fan
doaj +1 more source
Suspended mid-infrared waveguides for Stimulated Brillouin Scattering. [PDF]
We theoretically investigate a new class of silicon waveguides for achieving Stimulated Brillouin Scattering (SBS) in the mid-infrared (MIR). The waveguide consists of a rectangular core supporting a low-loss optical mode, suspended in air by a series of
M. Schmidt +5 more
semanticscholar +1 more source
Extreme thermodynamics in nanolitre volumes through stimulated Brillouin–Mandelstam scattering
Examining the physical properties of materials—particularly of toxic liquids—under a wide range of thermodynamic states is a challenging problem due to the extreme conditions the material has to experience.
Andreas Geilen +8 more
semanticscholar +1 more source
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source

