Results 271 to 280 of about 968,773 (372)
Plant Tissue Culture Regeneration and Aseptic Techniques
E Ikenganyia+3 more
openaire +2 more sources
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley +1 more source
Skeletal Muscle Tissue Engineering: From Tissue Regeneration to Biorobotics. [PDF]
Cordelle MZ, Snelling SJB, Mouthuy PA.
europepmc +1 more source
Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan+4 more
wiley +1 more source
THE USE OF TISSUE CULTURE AND CYTOCHEMICAL TECHNIQUE IN TOXICOLOGIC RESEARCH
William Clarke+2 more
openalex +2 more sources
Suction-Powered Intramedullary Bone Debridement Technology Compared to Conventional Curettage in Infected Revision Total Knee Arthroplasty. [PDF]
Hansen J+3 more
europepmc +1 more source
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana+2 more
wiley +1 more source
Flow‐Induced Vascular Remodeling on‐Chip: Implications for Anti‐VEGF Therapy
Flow‐induced vascular remodeling plays a critical role in network stabilization and function. Using a vasculature‐on‐chip system, this study reveals how physiological VEGF levels and flow affect vascular remodeling and provides insights into tumor vessel normalization.
Fatemeh Mirzapour‐Shafiyi+6 more
wiley +1 more source