Results 1 to 10 of about 25,954 (258)
Total Roman domination on the digraphs [PDF]
Let D=(V,A)D=\left(V,A) be a simple digraph with vertex set VV, arc set AA, and no isolated vertex. A total Roman dominating function (TRDF) of DD is a function h:V→{0,1,2}h:V\to \left\{0,1,2\right\}, which satisfies that each vertex x∈Vx\in V with h(x ...
Zhang Xinhong, Song Xin, Li Ruijuan
doaj +4 more sources
On the total Roman domination stability in graphs [PDF]
A total Roman dominating function on a graph G is a function satisfying the conditions: (i) every vertex u with f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2; (ii) the subgraph induced by the vertices assigned non-zero values has ...
Ghazale Asemian +3 more
doaj +5 more sources
Further Results on the Total Roman Domination in Graphs [PDF]
Let G be a graph without isolated vertices. A function f : V ( G ) → { 0 , 1 , 2 } is a total Roman dominating function on G if every vertex v ∈ V ( G ) for which f ( v ) = 0 is adjacent to at least one vertex u ...
Abel Cabrera Martínez +2 more
doaj +5 more sources
On the Quasi-Total Roman Domination Number of Graphs [PDF]
Domination theory is a well-established topic in graph theory, as well as one of the most active research areas. Interest in this area is partly explained by its diversity of applications to real-world problems, such as facility location problems ...
Abel Cabrera Martínez +2 more
doaj +5 more sources
Total Roman domination for proper interval graphs [PDF]
A function f:V → {0,1,2} is a total Roman dominating function (TRDF) on a graph G=(V,E) if for every vertex v ∈ V with f(v) = 0 there is a vertex u adjacent to v with f(u) = 2 and for every vertex v ∈ V with f(v) > 0 there exists a vertex u ∈ NG(v ...
Abolfazl Poureidi
doaj +5 more sources
Total Roman Domination Number of Rooted Product Graphs [PDF]
Let G be a graph with no isolated vertex and f:V(G)→{0,1,2} a function. If f satisfies that every vertex in the set {v∈V(G):f(v)=0} is adjacent to at least one vertex in the set {v∈V(G):f(v)=2}, and if the subgraph induced by the set {v∈V(G):f(v)≥1} has ...
Abel Cabrera Martínez +3 more
doaj +5 more sources
On The Total Roman Domination in Trees
A total Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the following conditions: (i) every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2 and (ii) the subgraph of G induced by ...
Amjadi Jafar +2 more
doaj +5 more sources
Hop total Roman domination in graphs
In this article, we initiate a study of hop total Roman domination defined as follows: a hop total Roman dominating function (HTRDF) on a graph [Formula: see text] is a function [Formula: see text] such that for every vertex u with f(u) = 0 there exists ...
H. Abdollahzadeh Ahangar +3 more
doaj +4 more sources
On the (total) Roman domination in Latin square graphs
Latin square, also known as Latin square matrix, refers to a kind of $ n\times n $ matrix, in which there are exactly $ n $ different symbols and each symbol appears exactly once in each row and column.
Chang-Xu Zhang +2 more
doaj +4 more sources
From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs [PDF]
Let G be a graph with no isolated vertex and let N(v) be the open neighbourhood of v∈V(G). Let f:V(G)→{0,1,2} be a function and Vi={v∈V(G):f(v)=i} for every i∈{0,1,2}.
Ana Almerich-Chuliá +3 more
semanticscholar +6 more sources

