Results 1 to 10 of about 123,660 (292)
Total Roman domination on the digraphs [PDF]
Let D=(V,A)D=\left(V,A) be a simple digraph with vertex set VV, arc set AA, and no isolated vertex. A total Roman dominating function (TRDF) of DD is a function h:V→{0,1,2}h:V\to \left\{0,1,2\right\}, which satisfies that each vertex x∈Vx\in V with h(x ...
Zhang Xinhong, Song Xin, Li Ruijuan
doaj +5 more sources
Further Results on the Total Roman Domination in Graphs [PDF]
Let G be a graph without isolated vertices. A function f : V ( G ) → { 0 , 1 , 2 } is a total Roman dominating function on G if every vertex v ∈ V ( G ) for which f ( v ) = 0 is adjacent to at least one vertex u ...
Abel Cabrera Martínez +2 more
doaj +5 more sources
Hop total Roman domination in graphs
In this article, we initiate a study of hop total Roman domination defined as follows: a hop total Roman dominating function (HTRDF) on a graph [Formula: see text] is a function [Formula: see text] such that for every vertex u with f(u) = 0 there exists ...
H. Abdollahzadeh Ahangar +3 more
doaj +4 more sources
Total Roman domination for proper interval graphs [PDF]
A function f:V → {0,1,2} is a total Roman dominating function (TRDF) on a graph G=(V,E) if for every vertex v ∈ V with f(v) = 0 there is a vertex u adjacent to v with f(u) = 2 and for every vertex v ∈ V with f(v) > 0 there exists a vertex u ∈ NG(v ...
Abolfazl Poureidi
doaj +5 more sources
Signed Total Roman Domination in Digraphs
Let D be a finite and simple digraph with vertex set V (D). A signed total Roman dominating function (STRDF) on a digraph D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑x∈N−(v)f(x) ≥ 1 for each v ∈ V (D), where N−(v) consists ...
Volkmann Lutz
doaj +7 more sources
On The Total Roman Domination in Trees
A total Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the following conditions: (i) every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2 and (ii) the subgraph of G induced by ...
Amjadi Jafar +2 more
doaj +6 more sources
From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs [PDF]
[EN] Let G be a graph with no isolated vertex and let N (v) be the open neighbourhood of v is an element of V (G). Let f : V (G) -> {0, 1, 2} be a function and V-i = {v is an element of V (G) : f (v) = i} for every i is an element of{0, 1, 2}.
Almerich-Chulia, Ana +3 more
core +7 more sources
Total double Roman domination in graphs [PDF]
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:V\rightarrow\{0,1,2,3\}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one ...
Guoliang Hao +2 more
doaj +3 more sources
Signed Total Roman Edge Domination In Graphs
Let G = (V,E) be a simple graph with vertex set V and edge set E. A signed total Roman edge dominating function of G is a function f : Ʃ → {−1, 1, 2} satisfying the conditions that (i) Ʃe′∈N(e) f(e′) ≥ 1 for each e ∈ E, where N(e) is the open ...
Asgharsharghi Leila +1 more
doaj +3 more sources
Bounds on signed total double Roman domination [PDF]
A signed total double Roman dominating function (STDRDF) on {an} isolated-free graph $G=(V,E)$ is a function $f:V(G)\rightarrow\{-1,1,2,3\}$ such that (i) every vertex $v$ with $f(v)=-1$ has at least two neighbors assigned 2 under $f$ or one neighbor ...
L. Shahbazi +3 more
doaj +3 more sources

