Results 171 to 180 of about 15,248,084 (403)

Ubiquitination of transcription factors in cancer: unveiling therapeutic potential

open access: yesMolecular Oncology, EarlyView.
In cancer, dysregulated ubiquitination of transcription factors contributes to the uncontrolled growth and survival characteristics of tumors. Tumor suppressors are degraded by aberrant ubiquitination, or oncogenic transcription factors gain stability through ubiquitination, thereby promoting tumorigenesis.
Dongha Kim, Hye Jin Nam, Sung Hee Baek
wiley   +1 more source

Combinatorial transcription factors

open access: yesCurrent Opinion in Genetics & Development, 1998
Combinatorial regulation of eukaryotic transcription is mediated by proteins that associate in a specific manner to form multiprotein DNA-bound complexes. Substantial progress has recently been made towards the understanding of the molecular determinants of the protein-protein and protein-DNA interactions that govern assembly of these complexes.
openaire   +3 more sources

Targeted protein degradation in oncology: novel therapeutic opportunity for solid tumours?

open access: yesMolecular Oncology, EarlyView.
Current anticancer therapies are limited by the occurrence of resistance and undruggability of most proteins. Targeted protein degraders are novel, promising agents that trigger the selective degradation of previously undruggable proteins through the recruitment of the ubiquitin–proteasome machinery. Their mechanism of action raises exciting challenges,
Noé Herbel, Sophie Postel‐Vinay
wiley   +1 more source

Benchmarking tools for transcription factor prioritization

open access: yesComputational and Structural Biotechnology Journal
Spatiotemporal regulation of gene expression is controlled by transcription factor (TF) binding to regulatory elements, resulting in a plethora of cell types and cell states from the same genetic information. Due to the importance of regulatory elements,
Leonor Schubert Santana   +6 more
doaj  

Aberrant expression of nuclear prothymosin α contributes to epithelial‐mesenchymal transition in lung cancer

open access: yesMolecular Oncology, EarlyView.
Nuclear prothymosin α inhibits epithelial‐mesenchymal transition (EMT) in lung cancer by increasing Smad7 acetylation and competing with Smad2 for binding to SNAI1, TWIST1, and ZEB1 promoters. In early‐stage cancer, ProT suppresses TGF‐β‐induced EMT, while its loss in the nucleus in late‐stage cancer leads to enhanced EMT and poor prognosis.
Liyun Chen   +12 more
wiley   +1 more source

An insulin-inducible transcription factor, SHARP-1, represses transcription of the SIRT1 longevity gene

open access: yesBiochemistry and Biophysics Reports, 2020
The rat enhancer of split- and hairy-related protein (SHARP)-1 genes encode insulin-inducible transcriptional repressors. A longevity gene, sirtuin 1 (SIRT1) encodes protein deacetylase.
Kosuke Asano   +3 more
doaj  

A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment

open access: yesCell, 2000
S. Szabo   +5 more
semanticscholar   +1 more source

Determination of ADP/ATP translocase isoform ratios in malignancy and cellular senescence

open access: yesMolecular Oncology, EarlyView.
The individual functions of three isoforms exchanging ADP and ATP (ADP/ATP translocases; ANTs) on the mitochondrial membrane remain unclear. We developed a method for quantitatively differentiating highly similar human ANT1, ANT2, and ANT3 using parallel reaction monitoring. This method allowed us to assess changes in translocase levels during cellular
Zuzana Liblova   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy