Results 171 to 180 of about 513,979 (295)

Bacteria‐Derived Extracellular Vesicle as A “Trojan Horse” for Selective M1 Macrophage‐Targeting in A Multi‐Cellular Entanglement Environment

open access: yesAdvanced Functional Materials, EarlyView.
The temporary transition of macrophages from a pro‐inflammatory phenotype of macrophages (M1) to an anti‐inflammatory phenotype of macrophages (M2) is crucial for tissue repair and regeneration processes. Bacterial outer membrane vesicles (OMVs) are utilized as a “trojan horse” for specific M1 macrophage‐targeting and anti‐inflammatory drug delivery ...
Donglin Cai   +9 more
wiley   +1 more source

A Visible Light‐Responsive Hydrogel to Study the Effect of Dynamic Tissue Stiffness on Cellular Mechanosensing

open access: yesAdvanced Functional Materials, EarlyView.
A visible light‐responsive polyacrylamide‐azobenzene hydrogel enables safe, reversible stiffness control for studying cell mechanobiology without harmful UV exposure. This approach reveals stem cells respond rapidly to mechanical changes, showing altered shape and protein distribution within one hour.
Aafreen Ansari   +11 more
wiley   +1 more source

Salvage and translocation of endangered Santa Cruz long-toed salamander larvae

open access: yesCalifornia Fish and Wildlife Journal, 2021
Terris Kasteen   +5 more
doaj   +1 more source

Transmembrane Activation of Catalysis and Protein Refolding in Synthetic Cells by Enzymes and Nanozymes

open access: yesAdvanced Functional Materials, EarlyView.
Synthetic cells are engineered herein to respond to an external chemical messenger by the activation of intracellular catalysis. The chemical messenger molecules are catalytically generated by an extracellular enzyme or a mineral surface, whereas the intracellular catalysis emerges via direct enzyme activation or via protein refolding.
Dante G. Andersen   +5 more
wiley   +1 more source

Magnetically Guided Mechanoactive Mineralization Scaffolds for Enhanced Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A 3D‐printed ‘rebar‐concrete’ inspired scaffold (PGS‐P@MGel) synergizes spontaneous biomineralization with magneto‐mechanical stimulation through PDA@Fe3O4‐embedded hydrogel. This dual biointerface activates Piezo1/β‐catenin/YAP mechanotransduction axis, enhancing BMSCs osteogenesis and angiogenesis simultaneously.
Xuran Guo   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy