Results 301 to 310 of about 729,544 (396)

Mucoadhesive Andrographolide-Loaded Liposomes for Nasal Delivery Modulate Inflammatory Responses in Tumor Necrosis Factor Alpha-Induced Acute Lung Injury in Mice. [PDF]

open access: yesACS Omega
Khongkow M   +10 more
europepmc   +1 more source

TMEM131‐Mediated Soluble TRAIL Triggered Type II Alveolar Epithelial Cell Senescence in Radiation‐Induced Lung Injury

open access: yesAdvanced Science, EarlyView.
TMEM131 recruits the COPII complex to accelerate TRAIL transportation from endoplasmic reticulum to Golgi apparatus, and promotes soluble TRAIL secretion. TRAIL inhibits mitophagy and induces senescence through DR5 receptor in type II alveolar epithelial cells, ultimately driving radiation‐induced lung injury (RILI) progression.
Linzhi Han   +10 more
wiley   +1 more source

RUNX2 Activation in Fibro/Adipogenic Progenitors Promotes Muscle Fibrosis in Muscular Dystrophy

open access: yesAdvanced Science, EarlyView.
This study revealed a novel role of the chemokine‐TGF‐β1‐RUNX2 axis in determining the fate of FAP differentiation and modulating muscle fibrosis in patients and mice with muscular dystrophies. ABSTRACT Clinical evidence indicates concurrent muscle inflammation and fibrosis in muscular dystrophies (MDs); however, the molecular mechanisms underlying ...
Pengkai Wu   +12 more
wiley   +1 more source

Resveratrol Mitigates Inflammation by Modulating Tumor Necrosis Factor-Alpha Receptors (TNFRs) in a 2,4,6-Trinitrobenzene Sulfonic Acid (TNBS)-Induced Rat Model of Colitis. [PDF]

open access: yesInt J Mol Sci
Veszelka M   +10 more
europepmc   +1 more source

Piezo1 Upregulation in Monocyte‐Derived Macrophages Impairs Post‐Myocardial Infarction Cardiac Repair via Defective Efferocytosis and Enhanced Ferroptosis

open access: yesAdvanced Science, EarlyView.
This study reports early Piezo1 activation in bone marrow monocyte‐derived macrophages (MoMs) during myocardial infarction (MI), which governs the fate and function of recruited macrophages. The recruited MoMs with increased Piezo1 expression exhibit increased ferroptosis and defective efferocytosis, delayed clearance of dead cells and resolution of ...
Lu Peng   +19 more
wiley   +1 more source

Nuclear Factor I‐B Delays Liver Fibrosis by Inhibiting Chemokine Ligand 5 Transcription

open access: yesAdvanced Science, EarlyView.
This study identifies the transcription factor Nuclear Factor I‐B (NFIB) as a key suppressor of liver fibrosis. NFIB expression declines during hepatic stellate cell activation, and its overexpression reduces fibrosis in mice models. The mechanism involves NFIB directly repressing chemokine C─C motif ligand 5 (CCL5), thereby alleviating oxidative ...
Qianqian Chen   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy