Results 241 to 250 of about 383,810 (341)

Targeting NRP1 in Endothelial Cells Facilitates the Normalization of Scar Vessels and Prevents Fibrotic Scarring

open access: yesAdvanced Science, EarlyView.
Scars exhibit vascular abnormal alterations, including upregulated NRP1 expression in endothelial cells, increased vascular density and branching, compromised vessel wall integrity, and incomplete pericyte coverage. Therapeutic targeting of NRP1 through hydrogel spray delivery offers a promising approach to normalize aberrant vasculature and prevent ...
Yu Wang   +11 more
wiley   +1 more source

PARPi Combining Nanoparticle LIN28B siRNA for the Management of Malignant Ascites

open access: yesAdvanced Science, EarlyView.
This study demonstrates that co‐inhibition of LIN28B and PARP using siLin28b/DSSP@lip‐PEG‐FA nanoparticles in combination with the PARP inhibitor BMN673 effectively suppresses the accumulation of malignant ascites associated with advanced cancers.
Yan Fang   +13 more
wiley   +1 more source

Wnt10a exhibit spatiotemporal singularity in the temporal changes of angiogenesis in regenerated pulp-like tissue. [PDF]

open access: yesInflamm Regen
Iida N   +6 more
europepmc   +1 more source

VEGF‐A mediates collateral formation during embryogenesis

open access: yesThe FASEB Journal, 2011
Jennifer Lucitti, James E. Faber
openaire   +1 more source

A Hydrodynamic Bioreactor for High‐Yield Production of Extracellular Vesicles from Stem Cell Spheroids with Defined Cargo Profiling

open access: yesAdvanced Science, EarlyView.
This study harnesses hydrodynamic flows to generate, confine and stimulate stem cell spheroids, enabling the large‐scale production of extracellular vesicles (EVs). This innovative method not only streamlines spheroid formation and subsequent EV release in a single, integrated process, but also ensures the generation of EVs with enhanced biological ...
Solène Lenoir   +7 more
wiley   +1 more source

Two Molecular Subgroups Predict Most Recurrences in Advanced Laryngeal Squamous Cell Carcinoma. [PDF]

open access: yesCancer Res Commun
Popov TM   +10 more
europepmc   +1 more source

LMO7 Suppresses Tumor‐Associated Macrophage Phagocytosis of Tumor Cells Through Degradation of LRP1

open access: yesAdvanced Science, EarlyView.
LMO7 in tumor‐associated macrophages suppresses phagocytosis of tumor cells and limits cytotoxic T lymphocytes infiltration, fostering tumor progression. Mechanistically, LMO7 mediates the ubiquitination and degradation of the phagocytic receptor LRP1, impairing its ability to engulf tumor cells and driving macrophages toward an antitumor phenotype ...
Mengkai Li   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy