Results 1 to 10 of about 1,470 (147)

Evidence conflict measurement method based on Pignistic probability transformation and singular value decomposition [PDF]

open access: yes, 2021
In view of the problem of poor adaptability and low accuracy of common evidence conflict measurement method, an evidence conflict measurement method based on Pignistic probability transformation and singular value decomposition was proposed.First ...
Lianzhi QI   +4 more
core   +1 more source

Exact nonlinear wave solutions for the modified Zakharov equation with a quantum correction(带有量子修正的Zakharov方程的精确非线性波解)

open access: yesZhejiang Daxue xuebao. Lixue ban, 2023
利用动力系统定性理论和分支方法,研究了带有量子修正的Zakharov方程的精确非线性波解,给出了不同参数条件下的相图,沿相图中的特殊轨道进行了积分,得到量子Zakharov方程的4个孤立波解、7个奇异波解和24个周期波解共3类非线性波解。当参数取特殊值时,对部分周期波解取极限,给出了周期波解演化为相应的孤立波解和奇异波解的过程。
吴沈辉(WU Shenhui)   +1 more
doaj   +1 more source

Method of fundamental solutions based on geodesic distance for inhomogeneous heat conduction equations In anisotropic medium(用测地距离的基本解方法求解非齐次各向异性热传导方程)

open access: yesZhejiang Daxue xuebao. Lixue ban, 2008
近年来,径向基函数类方法数值求解偏微分方程问题越来越受欢迎.借此提出了一种求解非齐次各向异性热传导方程的基于测地距离的基本解方法,该方法属于径向基函数类方法,它无需进行变量变换,也无需计算奇异积分.用截断奇异值分解(TSVD)求解病态线性方程组.后面的数值例子将验证这种方法的稳定性和有效性.
WANGJin-yu(王金玉)   +1 more
doaj   +1 more source

Research on single snapshot DOA estimation algorithm based on incompletely overlapped signal [PDF]

open access: yes, 2021
To address the problem that traditional direction-of-arrival (DOA) estimation algorithms did not fully utilize the signal characteristics of active decoys and radar, which led to poor angular resolution of anti-radiation missile, a single snapshot ...
Mingchao QU, Weijian SI, Yazhi YUAN
core   +1 more source

Handwritten digit classification algoritnm based on PARAFAC2 decomposition [PDF]

open access: yes, 2017
提出了基于平行因子2(PARAFAC2)分解的手写数字识别算法,与基于高阶奇异值分解的算法相比较,新方法的识别率没有降低,但是效率有所提高,更重要的是,新方法可以处理手写数字维数互异的情形。实验结果验证了算法的有效性。In this paper, we propose an algorithm for handwritten digit recognition based on the paral- lel factor 2 (PARAFAC2) decomposition.
卢琳璋, 徐海利, 陈震
core   +1 more source

An analytical method for solving Cauchy singular integral equations of the second kind with applications to fracture and contact analyses(断裂或接触力学问题中第二类柯西奇异积分方程的一种解析方法)

open access: yesZhejiang Daxue xuebao. Lixue ban, 2017
第二类柯西奇异积分方程因涉及复奇异因子往往造成求解困难,而适用第一类奇异积分方程的高效数值方法并不能推广至第二类奇异积分方程,即便是第二类奇异积分方程,其数值解法仍是一个难题.为此提出了构造第二类奇异积分方程解析解的一种新方法.通过分解柯西奇异项,并利用雅克比多项式的正交性,推导针对右端载荷项为单项式(monomial)的递推解析解,进而借助级数展开的方法推广至一般的载荷问题.提出的基于递推的解析解构造方案,能完美地结合maple软件编程,从而提供一种方便、快捷、有效的算法.由给出的算例可见 ...
JINXiaoqing(金晓清)   +5 more
doaj   +1 more source

Dynamic generalized principal component analysis with applications to fault subspace modeling [PDF]

open access: yes, 2022
In order to solve the problem of inaccurate modeling of fault subspace, traditional fault subspace modeling method did not consider the fact that fault data contain both normal and fault condition information, or did not consider the dynamic factors in ...
Chuan HE, Jianfeng XU, Xiaofeng FENG
core   +1 more source

Gamma norm minimization based image denoising algorithm [PDF]

open access: yes, 2020
Focusing on the issue of rather poor denoising performance of the traditional kernel norm minimization based method caused by the biased approximation of kernel norm to rank function,based on the low-rank theory,a gamma norm minimization based image ...
Hongyan WANG   +3 more
core   +1 more source

Existence of single and multiple positive solutions of singular boundary value problem(一类奇异边值问题正解的存在性及多解性)

open access: yesZhejiang Daxue xuebao. Lixue ban, 2017
应用Dancer全局分歧理论,研究奇异边值问题正解的存在性和多解性,其中f:[0,1]×[0,∞)→[0,∞)连续.给出了关于此类问题正解存在的充分条件,该充分条件与相应线性问题的第1个特征值有关,且所涉及的值是最优的.
YANDongming(闫东明)
doaj   +1 more source

双向聚类方法综述 [PDF]

open access: yes, 2019
传统的聚类方法由于无法提取样本和变量间的局部对应关系,并且当数据具有高维性和稀疏性时表现不佳,因此学者们提出了双向聚类,基于样本和变量间的局部关系,同时对样本和变量进行聚类,形成一个子矩阵的聚类结果。近年来,双向聚类发展迅速,在基因分析、文本聚类、推荐系统等领域应用广泛。首先,对双向聚类方法进行梳理与归纳,重点阐述稀疏双向聚类、谱双向聚类和信息双向聚类三类方法,分析它们之间的区别和联系,并且介绍这三类方法在多源数据的整合分析、多层聚类、半监督学习以及集成学习上的发展现状和趋势;其次 ...
张庆昭   +3 more
core   +2 more sources

Home - About - Disclaimer - Privacy