Results 181 to 190 of about 205,910 (243)
Cell‐Free DNA‐Based Theranostics for Inflammatory Disorders
Summary on the dual potential of cfDNA as biomarkers and therapeutic targets for inflammatory disorders. Figure was created with BioRender.com. ABSTRACT Inflammatory disorders are characterized by immune‐mediated inflammatory cascades that can affect multiple organs.
Jiatong Li +7 more
wiley +1 more source
Dynamic acetylation of a conserved lysine impacts glycerol kinase activity and abundance in the haloarchaeon Haloferax volcanii. [PDF]
Sanchez KM +4 more
europepmc +1 more source
T Cell Exhaustion in Cancer Immunotherapy: Heterogeneity, Mechanisms, and Therapeutic Opportunities
T cell exhaustion limits immunotherapy efficacy. This article delineates its progression from stem‐like to terminally exhausted states, governed by persistent antigen, transcription factors, epigenetics, and metabolism. It maps the exhaustion landscape in the TME and proposes integrated reversal strategies, providing a translational roadmap to overcome
Yang Yu +7 more
wiley +1 more source
From modification to malignancy: Bridging acetylation mechanisms and therapeutic innovations in melanoma (Review). [PDF]
Wu J +7 more
europepmc +1 more source
Chromosome segregation in Streptococcus pneumoniae depends on RocS, a bitopic protein whose membrane‐anchoring mechanisms were unclear. Using NMR and AFM, this study reveals that the widely conserved RocS anchor binds to membranes via a conserved kink‐helix motif which inserts into lipid nanodomains.
Ana Álvarez‐Mena +11 more
wiley +1 more source
Engineering Immune Cell to Counteract Aging and Aging‐Associated Diseases
This review highlights a paradigm shift in which advanced immune cell therapies, initially developed for cancer, are now being harnessed to combat aging. By engineering immune cells to selectively clear senescent cells and remodel pro‐inflammatory tissue microenvironments, these strategies offer a novel and powerful approach to delay age‐related ...
Jianhua Guo +5 more
wiley +1 more source
MicroRNA21/HDAC4 mediates podocyte apoptosis under high glucose conditions by regulating the activation of FoxO1. [PDF]
Fu L +6 more
europepmc +1 more source

