Results 51 to 60 of about 47,643 (280)
Enzymes of the 2‐hydroxyacyl‐CoA lyase group catalyze the condensation of formyl‐CoA with aldehydes or ketones. Thus, by structural adaptation of active sites, practically any pharmaceutically and industrially important 2‐hydroxyacid could be biotechnologically synthesized. Combining crystal structure analysis, active site mutations and kinetic assays,
Michael Zahn +4 more
wiley +1 more source
CoA‐dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases
PKAN, CoPAN, MePAN, and PDH‐E2 deficiency share key phenotypic features but harbor defects in distinct metabolic processes. Selective damage to the globus pallidus occurs in these genetic neurodegenerative diseases, which arise from defects in CoA ...
Roald A Lambrechts +10 more
doaj +1 more source
Cutaneous Melanoma Drives Metabolic Changes in the Aged Bone Marrow Immune Microenvironment
Melanoma, the deadliest form of skin cancer, increasingly affects older adults. Our study reveals that melanoma induces changes in iron and lipid levels in the bone marrow, impacting immune cell populations and increasing susceptibility to ferroptosis.
Alexis E. Carey +12 more
wiley +1 more source
Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint +6 more
wiley +1 more source
Membrane fusion‐inspired nanomaterials offer transformative potential in diagnostics by mimicking natural fusion processes to achieve highly sensitive and specific detection of disease biomarkers. This review highlights recent advancements in nanomaterial functionalization strategies, signal amplification systems, and stimuli‐responsive fusion designs,
Sojeong Lee +9 more
wiley +1 more source
To survive in diverse environments, bacteria adapt by changing the composition of their cell membrane fatty acids. Compared with aerobic bacteria, Cutibacterium acnes has much greater contents of branched-chain fatty acids (BCFAs) in the cell membrane ...
Ahjin Jang +3 more
doaj +1 more source
Strategies to Improve the Lipophilicity of Hydrophilic Macromolecular Drugs
Hydrophilic macromolecular drugs can be successfully lipidized by covalent attachment of lipids, by hydrophobic ion pairing with negatively or positively charged surfactants, and by dry or wet reverse micelle formation. Lipophilicity enhancement of hydrophilic macromolecules has several benefits including stability and bioavailability improvement ...
Sera Lindner +8 more
wiley +1 more source
Bacteria‐Responsive Nanostructured Drug Delivery Systems for Targeted Antimicrobial Therapy
Bacteria‐responsive nanocarriers are designed to release antimicrobials only in the presence of infection‐specific cues. This selective activation ensures drug release precisely at the site of infection, avoiding premature or indiscriminate release, and enhancing efficacy.
Guillermo Landa +3 more
wiley +1 more source
Background Neocinnamomum caudatum (Nees) Merr., a biodiesel tree species in the subtropical areas of South China, India and Burma, is distinctive from other species in Lauraceae family and its seed oil is rich in linoleic acid (18:2) and stearic acid (18:
Yi Gan +6 more
doaj +1 more source
Ralstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III. [PDF]
Fatty acid synthesis (FAS), a primary metabolic pathway, is essential for survival of bacteria. Ralstonia solanacearum, a β-proteobacteria member, causes a bacterial wilt affecting more than 200 plant species, including many economically important plants.
Ya-Hui Mao +4 more
doaj +1 more source

