Results 101 to 110 of about 67,230 (257)

Arginine Methylation Antagonizes TEAD3‐Mediated Repression to Promote Osteogenic Differentiation by Disrupting RUNX2‐Sequestrating Condensates

open access: yesAdvanced Science, EarlyView.
In the unmethylated state, TEAD forms stable, repressive condensates that sequester the osteogenic master regulator RUNX2. Arginine methylation of TEAD at R55 acts as a molecular brake, dissolving these condensates to release RUNX2 and activate the osteogenic program.
Lei Cao   +6 more
wiley   +1 more source

G(−) Anaerobes–Reactive CD4+ T-Cells Trigger RANKL-Mediated Enhanced Alveolar Bone Loss in Diabetic NOD Mice [PDF]

open access: bronze, 2005
Deeqa Mahamed   +6 more
openalex   +1 more source

Identification of a Force‐Induced Sox9+Acan+ Transitional Subpopulation Linked to FGF2–FGFR2–ERK Signaling in Orthodontic Bone Remodeling

open access: yesAdvanced Science, EarlyView.
Mechanical loading induces a previously unrecognized Sox9+Acan+ transitional mesenchymal cell population in the periodontal ligament that promotes osteoclastogenesis via the FGF2–FGFR2–ERK axis. Targeting this mechanoresponsive stromal population using a localized GelMA@siRNA delivery strategy attenuates pathological osteoclast overactivation and root ...
Miao Tan   +9 more
wiley   +1 more source

Spatial Transcriptomics of TMJ Reveals a Remodeling Fibroblast‐Immune Microenvironment Driving Arthritis Pain

open access: yesAdvanced Science, EarlyView.
Spatial transcriptomics reveals a remodeled fibroblast‐immune microenvironment in the temporomandibular joint (TMJ) during arthritis. By combining seqFISH with genetic mouse models, this study uncovers TMJ spatial cell atalas, macrophage‐fibroblast crosstalk, and cytokine signaling pathways driving TMJ inflammation and pain.
Ziying Lin   +10 more
wiley   +1 more source

Cell‐Free DNA‐Based Theranostics for Inflammatory Disorders

open access: yesAdvanced Science, EarlyView.
Summary on the dual potential of cfDNA as biomarkers and therapeutic targets for inflammatory disorders. Figure was created with BioRender.com. ABSTRACT Inflammatory disorders are characterized by immune‐mediated inflammatory cascades that can affect multiple organs.
Jiatong Li   +7 more
wiley   +1 more source

Comparative effects of riboflavin, nicotinamide and folic acid on alveolar bone loss: A morphometric and histopathologic study in rats

open access: diamond, 2016
Aysun Akpınar   +5 more
openalex   +2 more sources

Cascade Therapy of Periodontitis via Sequential Release of Ribosome‐Targeting Antimicrobial Peptide and Irisin From a Multifunctional MOF‐Based System

open access: yesAdvanced Science, EarlyView.
This study presents a novel strategy for periodontitis treatment by co‐delivering a membrane‐ and ribosome‐targeting antimicrobial peptide GF and Irisin through a pH‐responsive metal‐organic framework. The system enables sequential release, providing rapid antibacterial action, anti‐inflammatory and antioxidative effects, as well as promoting bone ...
Yan Chen   +10 more
wiley   +1 more source

Engineering Immune Cell to Counteract Aging and Aging‐Associated Diseases

open access: yesAdvanced Science, EarlyView.
This review highlights a paradigm shift in which advanced immune cell therapies, initially developed for cancer, are now being harnessed to combat aging. By engineering immune cells to selectively clear senescent cells and remodel pro‐inflammatory tissue microenvironments, these strategies offer a novel and powerful approach to delay age‐related ...
Jianhua Guo   +5 more
wiley   +1 more source

CGRP Enhances the Regeneration of Bone Defects by Regulating Bone Marrow Mesenchymal Stem Cells Through Promoting ANGPTL4 Secretion by Bone Blood Vessels

open access: yesAdvanced Science, EarlyView.
ABSTRACT Bone angiogenesis is important for bone formation and regeneration after bone injury. Endothelial‐derived angiogenic factors are key signal transducers in the bone microenvironment and maintain vascular–osteogenic coupling during bone regeneration.
Qiong Lu   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy