Results 231 to 240 of about 1,347,083 (336)

Engineering the Hierarchical Porosity of Granular Hydrogel Scaffolds Using Porous Microgels to Improve Cell Recruitment and Tissue Integration

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski   +9 more
wiley   +1 more source

TCR-based cellular immunotherapy for hepatocellular carcinoma: advances, challenges, and prospects. [PDF]

open access: yesCancer Immunol Immunother
Zeng W   +6 more
europepmc   +1 more source

Electric Pulse Regulated MXene Based Nanozymes for Integrative Bioelectricity Immuno‐Cancer Therapy

open access: yesAdvanced Functional Materials, EarlyView.
MXenzyme‐mediated bioelectricity cancer therapy (MXenzyme‐BECT) enhances cancer cell death through irreversible depolarization, ion channel disruption, ROS generation, and immunogenic cell death. Computational simulations reveal the electrical mechanisms by which MXenzyme acts on single cells and support to predict treatment parameters. Next‐generation
Sanghee Lee   +6 more
wiley   +1 more source

A novel nanoparticle vaccine displaying multistage tuberculosis antigens confers protection in mice infected with H37Rv. [PDF]

open access: yesNPJ Vaccines
Ding Y   +23 more
europepmc   +1 more source

Photothermal Hydrogel with Mn3O4 Nanoparticles Alleviates Intervertebral Disc Degeneration by Scavenging ROS and Regulating Extracellular Matrix Metabolism

open access: yesAdvanced Functional Materials, EarlyView.
The MPTT‐nanozyme‐hydrogel system (Mn3O4@ChS‐HA) provides a multifunctional therapeutic strategy for intervertebral disc degeneration (IVDD), effectively targeting oxidative stress and enhancing AF repair by restoring extracellular matrix (ECM) and redox homeostasis.
Yangyang Chen   +13 more
wiley   +1 more source

Multifunctional Hydroxyapatite Coated with Gallium Liquid Metal‐Based Silver Nanoparticles for Infection Prevention and Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A multifunctional hydroxyapatite (HAp) coating integrated with silver‐gallium liquid metal nanoparticles (HAp‐Ag‐GaNPs) exhibits dual antibacterial and osteogenic properties. It effectively inhibits Gram‐positive and Gram‐negative bacteria, including resistant strains, while enhancing bone regeneration.
Ngoc Huu Nguyen   +17 more
wiley   +1 more source

Quantitative bead-based multiplex assay for simultaneous determination of IgG concentrations of pertussis toxin, filamentous hemagglutinin, pertactin, diphtheria, tetanus, Haemophilus influenzae b, and hepatitis B in human serum samples. [PDF]

open access: yesFront Immunol
Rathod V   +18 more
europepmc   +1 more source

Optimizing Angiopep‐2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments

open access: yesAdvanced Functional Materials, EarlyView.
The Angiopep‐2 peptide density on polymeric nanoparticles significantly impacts blood–brain barrier (BBB) penetration. This study explores this nuanced relationship using various in vitro models and in vivo assays, revealing that dynamic models better predict BBB penetration.
Weisen Zhang   +9 more
wiley   +1 more source

NIR-II light-driven <i>in situ</i> nanovaccine for cancer immunotherapy via lymph node migration-mediated accumulation. [PDF]

open access: yesTheranostics
Huang Y   +14 more
europepmc   +1 more source

Strategies to Design and Optimize Artificial Antigen‐Presenting Cells for T Cell Expansion in Cancer Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley   +1 more source

Home - About - Disclaimer - Privacy