Results 191 to 200 of about 79,596 (285)
Erratum: Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness [Corrigendum]. [PDF]
europepmc +1 more source
Realization of tunable artificial synapse and memory based on amorphous oxide semiconductor transistor. [PDF]
Dai M +5 more
europepmc +1 more source
T Cell Exhaustion in Cancer Immunotherapy: Heterogeneity, Mechanisms, and Therapeutic Opportunities
T cell exhaustion limits immunotherapy efficacy. This article delineates its progression from stem‐like to terminally exhausted states, governed by persistent antigen, transcription factors, epigenetics, and metabolism. It maps the exhaustion landscape in the TME and proposes integrated reversal strategies, providing a translational roadmap to overcome
Yang Yu +7 more
wiley +1 more source
Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. [PDF]
Wu C +5 more
europepmc +1 more source
We demonstrate a hybrid WS2/CuInP2S6/graphene heterostructure integrated on a silicon nitride microring resonator for non‐volatile optical phase modulation with ultra‐low energy consumption and low insertion loss. While CIPS alone does not provide efficient optical index modulation, the engineered proposed device structure converts ferroelctric domain ...
Lalit Singh +10 more
wiley +1 more source
To overcome limitations of conventional AI hardware, a light‐voltage dual‐modulating synaptic (LVDS) transistor using an IGZO/InAs quantum dot hybrid structure is proposed. LVDS transistor enables analog summation for Dueling Deep Q‐Networks by independently modulating memory via optical and electrical stimuli.
Dong Gue Roe +10 more
wiley +1 more source
This study uncovers a recipient‐derived monocyte‐to‐macrophage trajectory that drives inflammation during kidney transplant rejection. Using over 150 000 single‐cell profiles and more than 850 biopsies, the authors identify CXCL10+ macrophages as key predictors of graft loss.
Alexis Varin +16 more
wiley +1 more source
A nanoparticle‐engineered electrolyte‐gated memtransistor is introduced as a materials‐level strategy to overcome the intrinsic trade‐off between energy consumption and synaptic precision. By embedding aluminum nanoparticles at the oxide–electrolyte interface to modulate ion trapping dynamics, the device achieves stable multistate plasticity under ...
Jun‐Gyu Choi +4 more
wiley +1 more source
Cation‐Driven Valence Change Mechanism in 2D AgCrS2 for Ultralow‐Power and Reliable Memristors
A 2D AgCrS2 volatile memristor is shown to switch via a cation‐driven valence change mechanism, where Ag+ reversibly intercalates into tetrahedral vacancies between CrS2 layers to form a conductive Ag2CrS2 pathway without elemental Ag metallization. The device exhibits 0.2 V switching, nA‐compliance power down to 200 pW, and endurance beyond 3 × 105 ...
Yueqi Su +8 more
wiley +1 more source
Here, we propose a single‐crystal PZT‐based piezo‐phototronic organic adaptive memory transistor (OAMT), achieving a record memory window capacity factor (γ) of 0.87 at a low SS of 200 mV/decade via efficient multi‐field control. The device achieves a high recognition accuracy ∼ 90% in neuromorphic simulations, demonstrates robust fault tolerance under
Chenhao Xu +8 more
wiley +1 more source

