Results 51 to 60 of about 89,596 (339)
Tumor microenvironment drives cancer formation and progression. We analyzed the role of human cancer‐associated adipocytes from patients with renal cell carcinoma (RCC) stratified as lean, overweight, or obese. RNA‐seq demonstrated that, among the most altered genes involved in the tumor–stroma crosstalk, are ADAM12 and CYP1B1, which were proven to be ...
Sepehr Torabinejad+13 more
wiley +1 more source
Latest Advancements on Combating Obesity by Targeting Human Brown/Beige Adipose Tissues
Obesity is defined as overaccumulation of white adipose tissue in the body, mainly under the skin (subcutaneous adiposity) or in the abdominal cavity (visceral adiposity).
Ruping Pan+3 more
doaj +1 more source
FatSegNet : A Fully Automated Deep Learning Pipeline for Adipose Tissue Segmentation on Abdominal Dixon MRI [PDF]
Purpose: Development of a fast and fully automated deep learning pipeline (FatSegNet) to accurately identify, segment, and quantify abdominal adipose tissue on Dixon MRI from the Rhineland Study - a large prospective population-based study. Method: FatSegNet is composed of three stages: (i) consistent localization of the abdominal region using two 2D ...
arxiv +1 more source
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana+2 more
wiley +1 more source
Computational modeling of the physical features that influence breast cancer invasion into adipose tissue [PDF]
Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on numerous biochemical and physical properties of cancer cells, adipocytes, and other key components of adipose tissue.
arxiv +1 more source
Circadian control of brown adipose tissue
Disruption of circadian (~24 h) rhythms is associated with an increased risk of cardiometabolic diseases. Therefore, unravelling how circadian rhythms are regulated in different metabolic tissues has become a prominent research focus. Of particular interest is brown adipose tissue (BAT), which combusts triglyceride-derived fatty acids and glucose into ...
Straat, M.E.+4 more
openaire +4 more sources
A visible light‐responsive polyacrylamide‐azobenzene hydrogel enables safe, reversible stiffness control for studying cell mechanobiology without harmful UV exposure. This approach reveals stem cells respond rapidly to mechanical changes, showing altered shape and protein distribution within one hour.
Aafreen Ansari+11 more
wiley +1 more source
Highly sprouting organoid‐like neurovascular spheroids (NVUs) are developed, featuring cell‐loaded poly‐3‐hydroxybutyrate 4‐hydroxybutyrate(P34HB) porous microsphere cores embedded within Gelatin Methacryloyl. NVUs formed complex vascular plexuses and secreted extracellular matrix in vitro, simulating autologous nerves and blood interaction.
Junjin Jie+5 more
wiley +1 more source
Thyroid hormone (TH) action regulates brown adipose tissue thermogenic capacity through incompletely understood mechanisms. Here the authors report that T3, the active form of TH, increases thermogenic capacity via thyroid hormone receptor α-mediated ...
Shengnan Liu+22 more
doaj +1 more source
Fully Automated and Standardized Segmentation of Adipose Tissue Compartments by Deep Learning in Three-dimensional Whole-body MRI of Epidemiological Cohort Studies [PDF]
Purpose: To enable fast and reliable assessment of subcutaneous and visceral adipose tissue compartments derived from whole-body MRI. Methods: Quantification and localization of different adipose tissue compartments from whole-body MR images is of high interest to examine metabolic conditions.
arxiv