Results 221 to 230 of about 341,145 (337)

Osteoblast‐CD4+ CTL Crosstalk Mediated by SIRT1/DAAM2 Axis Prevents Age‐Related Bone Loss

open access: yesAdvanced Science, EarlyView.
In the osteoblastic niche, SIRT1 activates and recruits CD4+ CTLs by increasing DAAM2 expression via EZH2 deacetylation and boosting the secretion of key chemokines, such as CCL3, CCL5, and CXCL10. Then, CD4+ CTL directly eliminates senescent osteoblasts in an MHC‐II‐dependent way, thereby slowing down the process of bone ageing and effectively ...
Bin Yang   +20 more
wiley   +1 more source

Caspase-mediated Cleavage of p130cas in Etoposide-induced Apoptotic Rat-1 Cells [PDF]

open access: green, 2000
Seunghyi Kook   +8 more
openalex   +1 more source

Life Factors and Melanoma: From the Macroscopic State to the Molecular Mechanism

open access: yesAdvanced Science, EarlyView.
Melanoma, an aggressive skin cancer, arises from dynamic interactions between genetic, environmental, and lifestyle factors. This review explores how age, gender, obesity, diet, exercise, smoking, alcohol, UV exposure, circadian rhythms, and medications influence melanoma risk and progression.
Hanbin Wang   +4 more
wiley   +1 more source

Ubiquitination‐Dependent LLGL2 Degradation Drives Colorectal Cancer Progression via THBS3 mRNA Stabilization

open access: yesAdvanced Science, EarlyView.
During the progression of CRC, MDM2, as an E3 ubiquitin ligase, promotes the degradation of the LLGL2 protein. Reduced expression of the LLGL2 protein leads to the loss of support for the CNOT1 protein, decreasing the degradation of THBS3 mRNA. The increased THBS3 further activates the PI3K‐Akt pathway, promoting the proliferation and metastasis of CRC.
Jiayan Huang   +8 more
wiley   +1 more source

HOXC8 impacts lung tumorigenesis by preventing pyroptotic cell death through the suppression of caspase-1 expression. [PDF]

open access: yesCell Death Dis
Padia R   +9 more
europepmc   +1 more source

Critical Role of IL1R2‐ENO1 Interaction in Inhibiting Glycolysis‐Mediated Pyroptosis for Protection Against Lethal Sepsis

open access: yesAdvanced Science, EarlyView.
The authors have discovered that intracellular interleukin 1 receptor 2 (IL1R2) negatively regulates pyroptosis and inflammation by inhibiting glycolysis in sepsis. Soluble IL1R2 is released from macrophages undergoing pyroptosis. IL1R2 acts as a novel negative regulator of glycolysis by interacting with enolase 1 (ENO1), thereby inhibiting gasdermin D
Chuyi Tan   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy