Results 161 to 170 of about 72,837 (274)
SIRT4 positively regulates autophagy via ULK1, but independently of HDAC6 and OPA1
Cells expressing SIRT4 (H161Y), a catalytically inactive mutant of the sirtuin SIRT4, fail to upregulate LC3B‐II and exhibit a reduced autophagic flux under stress conditions. Interestingly, SIRT4(H161Y) promotes phosphorylation of ULK1 at S638 and S758 that are associated with inhibition of autophagy initiation.
Isabell Lehmkuhl +13 more
wiley +1 more source
Quantum computing and the implementation of precision medicine. [PDF]
Nassir N +7 more
europepmc +1 more source
Metformin mediates mitochondrial quality control in Leber's hereditary optic neuropathy (LHON) fibroblasts carrying mtDNA mutations. At therapeutic levels, metformin activates AMPK signaling to restore mitochondrial dynamics by promoting fusion and restraining fission, while preserving mitochondrial mass, enhancing autophagy/mitophagy and biogenesis ...
Chatnapa Panusatid +3 more
wiley +1 more source
Combining AlphaFold with Focused Virtual Library Design in the Development of Novel CCR2 and CCR5 Antagonists. [PDF]
Essa K +9 more
europepmc +1 more source
Tandem VHH targeting distinct EGFR epitopes were engineered into a monovalent bispecific antibody (7D12‐EGA1‐Fc) with more potent ADCC without increasing affinity to EGFR. Structural modeling of 7D12‐EGA1‐Fc showed cross‐linking of separate EGFR domains to enhance CD16a engagement on NK cells.
Yuqiang Xu +5 more
wiley +1 more source
Topological deep learning for enhancing peptide-protein complex prediction. [PDF]
Dai X, Wang R, Zhang Y.
europepmc +1 more source
CRISPRI‐mediated gene silencing and phenotypic exploration in nontuberculous mycobacteria. In this Research Protocol, we describe approaches to control, monitor, and quantitatively assess CRISPRI‐mediated gene silencing in M. smegmatis and M. abscessus model organisms.
Vanessa Point +7 more
wiley +1 more source
Diversity-oriented photobiocatalytic synthesis via stereoselective three-component radical coupling. [PDF]
Zhang C +8 more
europepmc +1 more source
Enzymatic degradation of biopolymers in amorphous and molten states: mechanisms and applications
This review explains how polymer morphology and thermal state shape enzymatic degradation pathways, comparing amorphous and molten biopolymer structures. By integrating structure–reactivity principles with insights from thermodynamics and enzyme engineering, it highlights mechanisms that enable efficient polymer breakdown.
Anđela Pustak, Aleksandra Maršavelski
wiley +1 more source

