Results 211 to 220 of about 1,102,167 (387)
We fabricated a biomimetic dendrimer‐modified thin‐film nanocomposite membrane with a coordination‐assisted ion‐selective interface. pH‐responsive polypeptide sites preferentially bind Mg2+ and promote Li+ permeation, as predicted by density functional theory calculations of metal‐ligand interactions.
Mehrasa Yassari +7 more
wiley +1 more source
Mechanically Stable and Tunable Photoactivated Peptide‐Based Hydrogels for Soft Tissue Adhesion
A collagen‐like peptide hydrogel platform is developed using supramolecular self‐assembly and light‐triggered crosslinking. It creates mechanically stable, tunable hydrogels with cytocompatibility and biodegradability, making them potential soft tissue adhesives.
Alex Ross +8 more
wiley +1 more source
Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage [PDF]
Suzie Lavoie +5 more
openalex +1 more source
Cell Surface Thiol Engineering Mechanoregulates Myogenic Differentiation via the FAK–PI3K–AKT Axis
Schematic diagram illustrating how cell surface modification of skeletal muscle progenitor cells through TCEP treatment reveals enhanced cell adhesion, intracellular tension, and myogenesis at 19.66 kPa stiffness, leading to optimal cell fusion. In contrast, no significant changes are observed in the softer (10.61 kPa) or stiffer (49.4 kPa) matrices ...
Juyeon Kim +10 more
wiley +1 more source
Non-covalent interactions of Cysteine onto C60, C59Si, and C59Ge: A DFT study [PDF]
Mohsen Doust Mohammadi, Hewa Y. Abdullah
openalex +1 more source
A tunable methacrylated decellularized bone matrix hydrogel (dECM‐MA) is developed to support 3D culture of human osteoblasts. The hydrogel preserves bone‐specific ECM cues and allows precise control over mechanical properties. This system provides a customizable platform for studying osteogenic differentiation and modeling bone tissue environments for
Minne Dekker +5 more
wiley +1 more source
Mechanical and Electrical Phenotype of hiPSC‐Cardiomyocytes on Fibronectin‐Based Hydrogels
We introduce fibronectin‐based PEG hydrogels with controlled rigidity to enable the culture of iPSC‐derived cardiomyocytes. These substrates offer an alternative to the current culture of these cells on fibronectin‐coated glass, providing enhanced structural and functional behavior. The system provides a more physiologically relevant platform to assess
Ana Da Silva Costa +8 more
wiley +1 more source
Adequate thickness of the uterine lining is crucial for women with thin or damaged endometrium to achieve pregnancies. Endometrial mesenchymal stem cells (eMSC) can facilitate the cyclical repair and regeneration of the human endometrium. In this study, the human endometrium derived extracellular matrix hydrogel supports the growth of eMSC promoting ...
Jingwen Xu +9 more
wiley +1 more source
Design rules are presented to control intestinal organoid polarity in fully synthetic hydrogels. The laminin‐derived IKVAV sequence is crucial to obtain correct intestinal organoid polarity. Increasing hydrogel dynamics further supports the growth of correctly polarized intestinal organoids, while a bulk level of stiffness (G’ ≈ 0.7 kPa) is crucial to ...
Laura Rijns +10 more
wiley +1 more source
Cysteine Metabolism in Neuronal Redox Homeostasis.
B. Paul, Juan I. Sbodio, S. Snyder
semanticscholar +1 more source

