Results 171 to 180 of about 658,413 (361)

Proteins, Processing, and Properties of Adhesive Fluid Condensates Purified from Mussels

open access: yesAdvanced Functional Materials, EarlyView.
Mussels exhibit an unmatched proficiency for adhering to wet surfaces in salty environments—a remarkable ability that could inspire new biomedical and technical glues. The fluid protein condensates used to form the underwater mussel glue are extracted, reconstituted and characterized with advanced spectroscopy and nanomechanical analysis, revealing ...
Mathieu D. Rivard   +8 more
wiley   +1 more source

An Ionic Gelation Powder for Ultrafast Hemostasis and Accelerated Wound Healing

open access: yesAdvanced Functional Materials, EarlyView.
An ultrafast ionic gelation‐activated hemostatic powder (AGCL) forms a hydrogel within ≈1 s upon contact with blood‐derived calcium ions. The AGCL powder enables rapid hemorrhage control, strong tissue adhesion, and enhanced healing. The powder's pre‐crosslinked polymer network ensures high blood uptake and stability, offering effective treatment for ...
Youngju Son   +12 more
wiley   +1 more source

Epidermal Growth Factor Modulates Fetal Thymocyte Growth and Differentiation

open access: yesClinical and Developmental Immunology, 1998
Claudia S. Freitas   +3 more
doaj   +1 more source

Laser‐Microscribed Glass Enables Surface‐Microfluidics‐Facilitated, Affordable, Rapid Cancer Diagnosis

open access: yesAdvanced Functional Materials, EarlyView.
A transparent, laser‐microscribed glass platform enables cancer diagnosis within 1 h—much faster than histology, which takes days, and free from the chemical or contrast risks of MRI or CT scans. The antibody‐functionalized rough glass surface captures viable cancer cells directly from suspension, allowing instant optical readout and offering a rapid ...
Anish Pal   +5 more
wiley   +1 more source

An Ultrafast Self‐Gelling Versatile Hydrogel for Rapid Infected Burn Wound Repair in Military Medicine

open access: yesAdvanced Functional Materials, EarlyView.
A self‐gelling PG@PAC (POD/Gel‐CDH@PA/CHX) powder is developed for infected burn care in austere settings. Upon contact with wound exudate, it instantly forms an adhesive hydrogel, providing simultaneous hemostasis, broad‐spectrum antibacterial activity, reactive oxygen species scavenging, and immunomodulation. In a murine model of S.
Liping Zhang   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy