Results 121 to 130 of about 47,451 (277)

Oxide Semiconductor Thin‐Film Transistors for Low‐Power Electronics

open access: yesAdvanced Science, EarlyView.
This review explores the progress of oxide semiconductor thin‐film transistors in low‐power electronics. It illustrates the inherent material advantages of oxide semiconductor, which enable it to meet the low‐power requirements. It also discusses current strategies for reducing power consumption, including interface and structure engineering.
Shuhui Ren   +8 more
wiley   +1 more source

Water‐Assisted Exfoliation of HfO2‐Based Membrane for Flexible Robust Ferroelectric Synaptic Transistors

open access: yesAdvanced Science, EarlyView.
A flexible freestanding HfO2‐based ferroelectric membrane is achieved via a water‐assisted exfoliation technique using a Sr4Al2O₇ sacrificial layer. The BaTiO3/Hf0.5Zr0.5O2/BaTiO3 heterostructure maintains robust ferroelectricity and exhibits reliable synaptic plasticity.
Han Zhang   +13 more
wiley   +1 more source

Molecular Sieve Promoted Growth of Ferroelectric Trilayer 3R‐MoS2 for Polarization‐Dependent Reconfigurable Optoelectronic Synapses

open access: yesAdvanced Science, EarlyView.
The noncentrosymmetric trilayer rhombohedral‐stacked MoS2 nanoflakes with enhanced sliding ferroelectric properties are synthesized via a molecular sieve‐assisted chemical vapor deposition process. The switchable polarization states, combined with the exceptional light/gate voltage modulated electrical properties of these nanoflakes, enable broadband ...
Qichao Xue   +11 more
wiley   +1 more source

Research on Resistive Switching Mechanism of SnO2/SnS2 Based Heterojunction Memory Devices

open access: yesAdvanced Electronic Materials, EarlyView.
This work fabricates SnO2/SnS2 RRAM using (NH4)4Sn2S6, achieving 224 pJ set energy at 0.4 V with >1000‐cycle stability and 4 × 104 s retention. XPS/SEM/AFM‐validated interfacial engineering enables uniform switching, advancing low‐power neuromorphic memory development.
WenBin Liu   +4 more
wiley   +1 more source

Neuromorphic Motor Control with Electrolyte‐Gated Organic Synaptic Transistors

open access: yesAdvanced Electronic Materials, EarlyView.
Electrolyte‐gated organic synaptic transistor (EGOST)‐based neuromorphic motor control systems integrate sensing, processing, and actuation by mimicking biological synapses. With advantages such as low power consumption, tunable synaptic plasticity, and mechanical flexibility, they are emerging as next‐generation core technologies for real‐time ...
Sung‐Hwan Kim   +3 more
wiley   +1 more source

Optical Charge Trap Memory Based on Graphene/ZnO Heterostructures for Long‐Term Retention and Adaptive Learning

open access: yesAdvanced Electronic Materials, EarlyView.
A biocompatible graphene/ZnO optical charge trap memory (CTM) is reported with over 54 h retention, enabled by interfacial photodoping. Using transient absorption spectroscopy and electrical analysis, charge transfer quenching is elucidated and reveal that a large energy barrier at the interface is responsible for long‐term memory retention.
Seungmin Shin   +10 more
wiley   +1 more source

Electrode‐Engineered Dual‐Mode Multifunctional Lead‐Free Perovskite Optoelectronic Memristors for Neuromorphic Computing

open access: yesAdvanced Electronic Materials, EarlyView.
A lead‐free perovskite memristive solar cell structure that call emulate both synaptic and neuronal functions controlled by light and electric fields depending on top electrode type. ABSTRACT Memristive devices based on halide perovskites hold strong promise to provide energy‐efficient systems for the Internet of Things (IoT); however, lead (Pb ...
Michalis Loizos   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy