Results 31 to 40 of about 5,833 (185)
This study describes the natural stiffness of a pneumatic powered exoskeleton arm, designed as a haptic device in virtual reality applications. It is important for the haptic device to provide a natural, safe, and comfortable physical mutual human–robot ...
Dimitar Chakarov +3 more
doaj +1 more source
An Embedded Electromyogram Signal Acquisition Device
In this study, we design an embedded surface EMG acquisition device to conveniently collect human surface EMG signals, pursue more intelligent human–computer interactions in exoskeleton robots, and enable exoskeleton robots to synchronize with or even ...
Changjia Lu +8 more
doaj +1 more source
Development of the Stiffenable Exoskeleton Device for a Colonoscopy [PDF]
Colonoscopy provides a minimally invasive tool for examining and treating the colon without surgery, but current colonoscope designs still cause a degree of pain and mechanical trauma to the colon wall. The most common colonoscopes are long tubes inserted through the rectum with fiber optic lights, cameras, and biopsy tools on the distal end.
JungHun Choi, R. H. Sturges
openaire +1 more source
Emotional design of medical devices: exoskeletons and post-stroke recovery devices
The paper explores the integration of emotional design elements in the development of medical devices to enhance user acceptance and adherence. It emphasizes the importance of a user-centered approach, acknowledging both functional and emotional needs. The study compares two cases within healthcare design, highlighting the impact of emotional design on
Lund, Frederik Kiersgaard +6 more
openaire +3 more sources
Bio‐Friendly Artificial Muscles Based on Carbon Nanotube Yarns and Eutectogel Derivatives
Solid‐state artificial muscles based on coiled commercial carbon nanotube yarns coated with eutectogel derivatives exhibit unipolar actuation through selective ion intercalation. Combining polyanionic and polycationic gels enables enhanced contractile stroke and high energy density.
Gabriela Ananieva +6 more
wiley +1 more source
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Background Robotic lower-limb exoskeletons have the potential to provide additional clinical benefits for persons with spinal cord injury (SCI). However, high variability between protocols does not allow the comparison of study results on safety and ...
Mark Andrew Wright +10 more
doaj +1 more source
Physical Intelligence in Small‐Scale Robots and Machines
“Physical intelligence” (PI) empowers biological organisms and artificial machines, especially at the small scales, to perceive, adapt, and even reshape their complex, dynamic, and unstructured operation environments. This review summarizes recent milestones and future directions of PI in small‐scale robots and machines.
Huyue Chen, Metin Sitti
wiley +1 more source
Hydrogel‐Based Functional Materials: Classifications, Properties, and Applications
Conductive hydrogels have emerged as promising materials for smart wearable devices due to their outstanding flexibility, multifunctionality, and biocompatibility. This review systematically summarizes recent progress in their design strategies, focusing on monomer systems and conductive components, and highlights key multifunctional properties such as
Zeyu Zhang, Zao Cheng, Patrizio Raffa
wiley +1 more source
In this paper, an experimental evaluation of an active upper-limb exoskeleton, where 12 subjects perform an overhead industrial task with and without the exoskeleton, is presented.
Andrea Blanco +4 more
doaj +1 more source

