Results 31 to 40 of about 680,483 (305)

The Caenorhabditis elegans DPF‐3 and human DPP4 have tripeptidyl peptidase activity

open access: yesFEBS Letters, EarlyView.
The dipeptidyl peptidase IV (DPPIV) family comprises serine proteases classically defined by their ability to remove dipeptides from the N‐termini of substrates, a feature that gave the family its name. Here, we report the discovery of a previously unrecognized tripeptidyl peptidase activity in DPPIV family members from two different species.
Aditya Trivedi, Rajani Kanth Gudipati
wiley   +1 more source

Physiological and therapeutic regulation of glucose homeostasis by upper small intestinal PepT1-mediated protein sensing

open access: yesNature Communications, 2018
High protein diets are known to improve metabolic parameters including adiposity and glucose homeostasis. Here the authors demonstrate that preabsorptive upper small intestinal protein-sensing mechanisms mediated by peptide transporter 1 improve glucose ...
Helen J. Dranse   +6 more
doaj   +1 more source

TRPV1 neurons regulate β-cell function in a sex-dependent manner

open access: yesMolecular Metabolism, 2018
There is emerging evidence to support an important role for the transient receptor potential vanilloid type 1 (TRPV1) sensory innervation in glucose homeostasis.
Joey Bou Karam   +8 more
doaj   +1 more source

Crosstalk between the ribosome quality control‐associated E3 ubiquitin ligases LTN1 and RNF10

open access: yesFEBS Letters, EarlyView.
Loss of the E3 ligase LTN1, the ubiquitin‐like modifier UFM1, or the deubiquitinating enzyme UFSP2 disrupts endoplasmic reticulum–ribosome quality control (ER‐RQC), a pathway that removes stalled ribosomes and faulty proteins. This disruption may trigger a compensatory response to ER‐RQC defects, including increased expression of the E3 ligase RNF10 ...
Yuxi Huang   +8 more
wiley   +1 more source

Function‐driven design of a surrogate interleukin‐2 receptor ligand

open access: yesFEBS Letters, EarlyView.
Interleukin (IL)‐2 signaling can be achieved and precisely fine‐tuned through the affinity, distance, and orientation of the heterodimeric receptors with their ligands. We designed a biased IL‐2 surrogate ligand that selectively promotes effector T and natural killer cell activation and differentiation. Interleukin (IL) receptors play a pivotal role in
Ziwei Tang   +9 more
wiley   +1 more source

Mechanisms of parasite‐mediated disruption of brain vessels

open access: yesFEBS Letters, EarlyView.
Parasites can affect the blood vessels of the brain, often causing serious neurological problems. This review explains how different parasites interact with and disrupt these vessels, what this means for brain health, and why these processes matter. Understanding these mechanisms may help us develop better ways to prevent or treat brain infections in ...
Leonor Loira   +3 more
wiley   +1 more source

Metformin Targets Foxo1 to Control Glucose Homeostasis

open access: yesBiomolecules, 2021
Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus (T2D). Metformin exerts its glucose-lowering effect primarily through decreasing hepatic glucose production (HGP).
Xiaoqin Guo   +13 more
doaj   +1 more source

The (Glg)ABCs of cyanobacteria: modelling of glycogen synthesis and functional divergence of glycogen synthases in Synechocystis sp. PCC 6803

open access: yesFEBS Letters, EarlyView.
We reconstituted Synechocystis glycogen synthesis in vitro from purified enzymes and showed that two GlgA isoenzymes produce glycogen with different architectures: GlgA1 yields denser, highly branched glycogen, whereas GlgA2 synthesizes longer, less‐branched chains.
Kenric Lee   +3 more
wiley   +1 more source

SPINA Carb: a simple mathematical model supporting fast in-vivo estimation of insulin sensitivity and beta cell function

open access: yesScientific Reports, 2022
Modelling insulin-glucose homeostasis may provide novel functional insights. In particular, simple models are clinically useful if they yield diagnostic methods.
Johannes W. Dietrich   +7 more
doaj   +1 more source

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy