The chronic glutamate‐induced excitotoxicity hypothesis has profoundly informed the therapeutic strategies employed in Alzheimer’s disease (AD). This study shows pigment epithelium‐derived factor (PEDF) regulates astrocytic glutamate transporter‐1 (GLT‐1)‐mediated glutamate homeostasis and cognition. Reduced PEDF correlates with lower Mini‐Mental State
Jin‐Hui Shi+15 more
wiley +1 more source
Regulators of G-protein signaling (RGS) proteins modulate receptor signaling by binding to activated G-protein α-subunits, accelerating GTP hydrolysis.
Vincent S. Shaw+4 more
semanticscholar +1 more source
The elemental mechanism of transcriptional pausing. [PDF]
Transcriptional pausing underlies regulation of cellular RNA biogenesis. A consensus pause sequence that acts on RNA polymerases (RNAPs) from bacteria to mammals halts RNAP in an elemental paused state from which longer-lived pauses can arise.
Chua, Xien Yu+6 more
core +1 more source
Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif [PDF]
Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have
Baillie, George S.+14 more
core +1 more source
Post‐Translational Modified Neoantigens in Autoimmune Diseases: Challenges of Immune Tolerance
Autoimmune diseases have a high incidence and disability rate. The pathogenesis of autoimmune diseases involves the interaction among genetic factors, environmental factors, and immune disorders. The post‐translational modified neoantigens are the key nodal of these three factors. And these post‐translational modified neoantigens, after being presented
Yue Zhai+5 more
wiley +1 more source
Amino-terminal cysteine residues of RGS16 are required for palmitoylation and modulation of G(i)- and G(q)-mediated signaling [PDF]
RGS proteins (Regulators of G protein Signaling) are a recently discovered family of proteins that accelerate the GTPase activity of heterotrimeric G protein α subunits of the i, q, and 12 classes.
Backlund, Peter S.+5 more
core +1 more source
Activation of Kir4.1 Channels by 2‐D08 Promotes Myelin Repair in Multiple Sclerosis
Multiple sclerosis causes myelin loss and neurological dysfunction. This study shows that 2‐D08, a small molecule targeting Kir4.1 channels, promotes OPCs differentiation via FYN tyrosine kinase phosphorylation and the FYN/MYRF pathway. It significantly improves myelin repair and motor deficits in EAE mice and marmosets, highlighting its potential as a
Mingdong Liu+17 more
wiley +1 more source
Caveolin-1 Phosphorylation Is Essential for Axonal Growth of Human Neurons Derived From iPSCs. [PDF]
Proper axonal growth and guidance is essential for neuron differentiation and development. Abnormal neuronal development due to genetic or epigenetic influences can contribute to neurological and mental disorders such as Down syndrome, Rett syndrome, and
Almenar-Queralt, Angels+8 more
core +1 more source
Long Term High‐Salt Diet Induces Cognitive Impairments via Down‐Regulating SHANK1
The study identifies a novel mechanistic link between long‐term HS diet and cognitive impairment, wherein PKA/CREB axis inactivation leads to SHANK1 reduction, synaptic damage, and cognitive deficits. Abstract High‐salt (HS) diet is an established risk factor for cognitive impairment, but the underlying mechanisms remain unclear.
Cuiping Guo+10 more
wiley +1 more source
Gill transcriptome response to changes in environmental calcium in the green spotted puffer fish [PDF]
Background Calcium ion is tightly regulated in body fluids and for euryhaline fish, which are exposed to rapid changes in environmental [Ca2+], homeostasis is especially challenging. The gill is the main organ of active calcium uptake and therefore plays
Canario, Adelino V. M.+6 more
core +5 more sources