Results 241 to 250 of about 1,210,893 (313)
Versatile Cell Penetrating Peptide for Multimodal CRISPR Gene Editing in Primary Stem Cells
CRISPR machinery in diverse molecular formats (DNA, RNA, and ribonucleic protein) is complexed into nanoparticles with the cell‐friendly arginine‐alanine‐leucine‐alanine (RALA) cell‐penetrating peptide. Nanoparticles are delivered to primary mesenchymal stem cells ex vivo or locally in vivo to facilitate multimodal CRISPR gene editing. This RALA‐CRISPR
Joshua P. Graham +9 more
wiley +1 more source
Lipid nanoparticles (LNPs) are optimized to co‐deliver Cas9‐encoding messenger RNA (mRNA), a single guide RNA (sgRNA) targeting the endogenous cystic fibrosis transmembrane conductance regulator (CFTR) gene, and homologous linear double‐stranded donor DNA (ldsDNA) templates encoding CFTR.
Ruth A. Foley +12 more
wiley +1 more source
Preventive Human Genome Editing and Enhancement: Candidate Criteria for Governance. [PDF]
Juengst E +8 more
europepmc +1 more source
Porous silicon nanoparticles (PSiNPs) reprogram macrophage endocytosis of manganese@albumin‐based TLR4 nanoagonists, driving TRIF‐biased TLR4 signaling, eliciting robust proinflammatory responses, and potentiating macrophage‐mediated immunotherapeutic effects against NSCLC.
Xiaomei Zhang +9 more
wiley +1 more source
Replicative DNA polymerase epsilon and delta holoenzymes show wide-ranging inhibition at G-quadruplexes in the human genome. [PDF]
Hile SE +9 more
europepmc +1 more source
FeDSNP‐Pa, a metallized nanoparticle loaded with sodium pyruvate (Pa), exerts triple therapeutic effects by scavenging reactive oxygen species (ROS), suppressing inflammatory responses, and inhibiting pyroptosis signaling pathways. This multifunctional neuroprotective strategy protecting retinal ganglion cells (RGCs) from elevated intraocular pressure ...
Yukun Wu +5 more
wiley +1 more source
Functional characteristics and computational model of abundant hyperactive loci in the human genome. [PDF]
Hudaiberdiev S, Ovcharenko I.
europepmc +1 more source
Next‐Generation Bio‐Reducible Lipids Enable Enhanced Vaccine Efficacy in Malaria and Primate Models
Structure–activity relationship (SAR) optimization of bio‐reducible ionizable lipids enables the development of highly effective lipid nanoparticle (LNP) mRNA vaccines. Lead LNPs show superior tolerability and antibody responses in rodents and primates, outperforming approved COVID‐19 vaccine lipids.
Ruben De Coen +30 more
wiley +1 more source

