Results 271 to 280 of about 794,012 (351)

Novel 2-phenylquinolin-7-yl-derived imidazo[1,5-a]pyrazines as potent insulin-like growth factor-I receptor (IGF-IR) inhibitors

open access: green, 2007
Mark J. Mulvihill   +20 more
openalex   +1 more source

Activating the Osteoblastic USP26 Pathway Alleviates Multi‐Organ Fibrosis by Decreasing Insulin Resistance

open access: yesAdvanced Science, EarlyView.
The loss of Ubiquitin Specific Peptidase 26 (USP26) in osteoblasts results in decreased bone formation, as well as multi‐organ fibrosis associated with insulin resistance (IR). Mechanistically, the absence of USP26 reduces glycolysis and lactate accumulation, leading to decreased histone H3 lysine 18 lactylation (H3K18LA) in the promoter region of KH ...
Jiyuan Tang   +9 more
wiley   +1 more source

Metabolic syndrome and ADRB3 gene polymorphism in severely obese patients from South Italy [PDF]

open access: yes, 2007
C Finelli   +9 more
core  

A Time‐Programmed Bilayer Wound Dressing for Dynamic Microenvironment Modulation and Full‐Thickness Regeneration in Diabetic Wounds

open access: yesAdvanced Science, EarlyView.
The Polyphenol+PDGF‐BB scaffold fabrication (Panel A) and its dual wound healing effects (Panel B: anti‐inflammation and accelerated tissue remodeling). ABSTRACT Chronic diabetic wounds suffer from dysfunctional repair programs due to accumulated advanced glycation end products (AGEs) and persistent inflammation in hyperglycemic microenvironments ...
Lei Yi   +7 more
wiley   +1 more source

PTG‐Dependent Glycogen Metabolic Dysfunction Drives Impaired Adipose Browning: A Novel Mechanism Linking PM2.5 to Metabolic Disorders

open access: yesAdvanced Science, EarlyView.
This study provides the first evidence that PM2.5 impairs iWAT browning via PTG‐mediated glycogen metabolism disruption, which is initiated by ADRB3 inhibition and subsequently triggers VEGFB upregulation. It thereby delineates the ADRB3‐PTG‐VEGFB axis as central to PM2.5‐induced metabolic dysfunction and identifies adipose glycogen metabolism as a ...
Limin Wang   +12 more
wiley   +1 more source

Targeting Endothelial KDM5A to Attenuate Aging and Ameliorate Age‐Associated Metabolic Abnormalities

open access: yesAdvanced Science, EarlyView.
This study identifies endothelial KDM5A as a key regulator of aging. KDM5A deficiency accelerates aging by enhancing H3K4me3‐mediated FABP4 expression, disrupting fatty acid metabolism, and promoting multi‐organ senescence. KDM5A restoration or FABP4 inhibition reverses these adverse effects and extends lifespan, positioning the KDM5A/FABP4 axis as a ...
Rifeng Gao   +21 more
wiley   +1 more source

Hepatocyte Mettl3 Deficiency Drives Primary Sclerosing Cholangitis and Liver Fibrosis via Cholangiocyte‐Macrophage Crosstalk

open access: yesAdvanced Science, EarlyView.
Schematic illustration demonstrating that hepatic Mettl3 depletion significantly elevates the secretion of Mif and Csf1. This elevation facilitates Trem2+ macrophage infiltration and triggers cholangiocyte remodeling through the Spp1‐Cd44 interaction, resulting in spontaneous PSC development in vivo.
Wenting Pan   +19 more
wiley   +1 more source

Home - About - Disclaimer - Privacy