Results 261 to 270 of about 4,110,467 (359)

High-Protein Diet Exacerbates Insulin Resistance via the JNK/IKKβ-IRS-1 Pathway. [PDF]

open access: yesEndocrinol Diabetes Metab
Li J   +13 more
europepmc   +1 more source

Integrin β3 Orchestrates Hepatic Steatosis via a Novel CD36‐Dependent Lipid Uptake Complex

open access: yesAdvanced Science, EarlyView.
In MASH, ITGB3 recruits LYN and drives its ubiquitin‐proteasomal degradation via phosphorylation. This relieves DHHC5 inhibition, enabling ITGB3/DHHC5/CD36 complex assembly to enhance CD36 palmitoylation and fatty acid uptake, thereby exacerbating disease. Targeting ITGB3 blocks this pathogenic axis and ameliorates MASH.
Ying Zhang   +13 more
wiley   +1 more source

The moderating role of diet and physical activity in insulin resistance and immunometabolic depression. [PDF]

open access: yesSci Rep
Gruber JR   +8 more
europepmc   +1 more source

The Gut Commensal Butyricimonas Virosa Modulates Gut Microbiota‐Dependent Thiamine Metabolism and Attenuates Mouse Steatotic Liver Disease

open access: yesAdvanced Science, EarlyView.
This study reveals that dietary stachyose enriches Butyricimonas virosa, effectively attenuating metabolic dysfunction‐associated steatotic liver disease (MASLD). Mechanistically, B. virosa enhances gut thiamine monophosphate synthesis, which elevates hepatic thiamine pyrophosphate levels.
Ningning He   +17 more
wiley   +1 more source

Discovery of an Adaptive Neuroimmune Response Driving Itch and Fast Tick Removal with Implications for Preventing Pathogen Transmission

open access: yesAdvanced Science, EarlyView.
Doehl et al. discovered an adaptive neuroimmune mechanism that induces itch in tick‐exposed guinea pigs, enabling rapid tick removal. This itch‐induced tick removal (IITR) is mediated by an adaptive cellular immune response and is independent of IgG, IgE, or TRPV1.
Johannes S. P. Doehl   +27 more
wiley   +1 more source

Type 3 Diabetes: Linking Insulin Resistance to Cognitive Decline. [PDF]

open access: yesDiseases
Chapple B   +5 more
europepmc   +1 more source

Arginine Methylation Antagonizes TEAD3‐Mediated Repression to Promote Osteogenic Differentiation by Disrupting RUNX2‐Sequestrating Condensates

open access: yesAdvanced Science, EarlyView.
In the unmethylated state, TEAD forms stable, repressive condensates that sequester the osteogenic master regulator RUNX2. Arginine methylation of TEAD at R55 acts as a molecular brake, dissolving these condensates to release RUNX2 and activate the osteogenic program.
Lei Cao   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy