Results 181 to 190 of about 8,080 (219)
The impact of a random metric upon a diffusing particle. [PDF]
Haba Z.
europepmc +1 more source
Prevalence and Morphology of C-Shaped Canals in Mandibular Second Molars: A Cross-Sectional Cone Beam Computed Tomography Study in an Ecuadorian Population. [PDF]
Laplace JF +4 more
europepmc +1 more source
A nonholonomic Laplace operator [PDF]
See the review in Zbl 0779.53029.
Anatoly Vershik, V. Ya. Gershkovich
openaire +2 more sources
Some of the next articles are maybe not open access.
Related searches:
Related searches:
On The Attainable Eigenvalues of the Laplace Operator
SIAM Journal on Mathematical Analysis, 1999Summary: We consider the subset \(E\) of \(\mathbb{R}^2\) of all points whose first and second components, respectively, coincide with the first and second eigenvalues of the Laplace operator \(-\Delta\) with zero boundary conditions on domains of \(\mathbb{R}^N\) with prescribed measure. We show that the set \(E\) is closed in \(\mathbb{R}^2\).
D. Bucur +2 more
openaire +3 more sources
2018
The fundamental properties of harmonic and subharmonic functions are given together with maximum principles, the representation of solutions of the Poisson equation, Weyl’s lemma and Perron’s method for proving existence of solutions of the Dirichlet problem.
David E. Edmunds, W. Desmond Evans
openaire +2 more sources
The fundamental properties of harmonic and subharmonic functions are given together with maximum principles, the representation of solutions of the Poisson equation, Weyl’s lemma and Perron’s method for proving existence of solutions of the Dirichlet problem.
David E. Edmunds, W. Desmond Evans
openaire +2 more sources
MULTIPLE EIGENVALUES OF THE LAPLACE OPERATOR [PDF]
The estimates from above for the multiplicity of the eigenvalues of the Schrödinger operators on compact Riemannian two-dimensional manifolds are obtained. The paper contains also several examples illustrating the sharpness of the results.
openaire +2 more sources
2017
We consider what is perhaps the most important of all partial differential operators, theLaplace operator (Laplacian) on \(\mathbb {R}^n\).
openaire +2 more sources
We consider what is perhaps the most important of all partial differential operators, theLaplace operator (Laplacian) on \(\mathbb {R}^n\).
openaire +2 more sources
2019
In diesem Kapitel betrachten wir Differentialoperatoren, die in engem Zusammenhang mit der orthogonalen Gruppe der Raumdrehungen im \( {\mathbb{R}}^{n} \) stehen. Zum einen ist dies der sogenannte Laplace Operator \( \Delta = \sum\limits_{i = 1}^{n} {\partial_{i}^{2} } \) , gegeben durch die Summe der zweiten Ableitungen, und zum anderen der Euler ...
openaire +2 more sources
In diesem Kapitel betrachten wir Differentialoperatoren, die in engem Zusammenhang mit der orthogonalen Gruppe der Raumdrehungen im \( {\mathbb{R}}^{n} \) stehen. Zum einen ist dies der sogenannte Laplace Operator \( \Delta = \sum\limits_{i = 1}^{n} {\partial_{i}^{2} } \) , gegeben durch die Summe der zweiten Ableitungen, und zum anderen der Euler ...
openaire +2 more sources

