Results 211 to 220 of about 1,336,458 (254)

Der Laplace Operator

Kompendium der reellen Analysis, 2019
In diesem Kapitel betrachten wir Differentialoperatoren, die in engem Zusammenhang mit der orthogonalen Gruppe der Raumdrehungen im \( {\mathbb{R}}^{n} \) stehen. Zum einen ist dies der sogenannte Laplace Operator \( \Delta = \sum\limits_{i = 1}^{n} {\partial_{i}^{2} } \) , gegeben durch die Summe der zweiten Ableitungen, und zum anderen der Euler ...
R. Weissauer
semanticscholar   +3 more sources

The Laplace Operator

, 2017
We consider what is perhaps the most important of all partial differential operators, theLaplace operator (Laplacian) on \(\mathbb {R}^n\).
V. Serov
semanticscholar   +3 more sources

A critical Kirchhoff‐type problem driven by a p (·)‐fractional Laplace operator with variable s (·) ‐order

Mathematical methods in the applied sciences, 2020
The paper deals with the following Kirchhoff‐type problem M∬ℝ2N1p(x,y)|v(x)−v(y)|p(x,y)|x−y|N+p(x,y)s(x,y)dxdy(−Δ)p(·)s(·)v(x)=μg(x,v)+|v|r(x)−2vinΩ,v=0inℝN\Ω, where M models a Kirchhoff coefficient, (−Δ)p(·)s(·) is a variable s(·)‐order p(·)‐fractional ...
J. Zuo, Tianqing An, A. Fiscella
semanticscholar   +1 more source

A nonholonomic Laplace operator [PDF]

open access: possibleJournal of Soviet Mathematics, 1993
In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds.
Anatoly Vershik, V. Ya. Gershkovich
openaire   +1 more source

Home - About - Disclaimer - Privacy