Results 211 to 220 of about 1,336,458 (254)
Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials. [PDF]
El-Dali A, Othman MIA.
europepmc +1 more source
Fundamental solution of the time-space bi-fractional diffusion equation with a kinetic source term for anomalous transport. [PDF]
Allagui A+4 more
europepmc +1 more source
An enhanced Bayesian approach for damage identification utilizing prior knowledge from refined elemental modal strain energy ratios. [PDF]
Chen L, Chen H, Liu LL.
europepmc +1 more source
Description of chemical systems by means of response functions. [PDF]
Franco E, Kepka B, Velázquez JJL.
europepmc +1 more source
Colorful 3D Reconstruction and an Extended Depth of Field for a Monocular Biological Microscope Using an Electrically Tunable Lens. [PDF]
Cheng Y, Liu M, Ou Y, Liu L, Hao Q.
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Kompendium der reellen Analysis, 2019
In diesem Kapitel betrachten wir Differentialoperatoren, die in engem Zusammenhang mit der orthogonalen Gruppe der Raumdrehungen im \( {\mathbb{R}}^{n} \) stehen. Zum einen ist dies der sogenannte Laplace Operator \( \Delta = \sum\limits_{i = 1}^{n} {\partial_{i}^{2} } \) , gegeben durch die Summe der zweiten Ableitungen, und zum anderen der Euler ...
R. Weissauer
semanticscholar +3 more sources
In diesem Kapitel betrachten wir Differentialoperatoren, die in engem Zusammenhang mit der orthogonalen Gruppe der Raumdrehungen im \( {\mathbb{R}}^{n} \) stehen. Zum einen ist dies der sogenannte Laplace Operator \( \Delta = \sum\limits_{i = 1}^{n} {\partial_{i}^{2} } \) , gegeben durch die Summe der zweiten Ableitungen, und zum anderen der Euler ...
R. Weissauer
semanticscholar +3 more sources
, 2017
We consider what is perhaps the most important of all partial differential operators, theLaplace operator (Laplacian) on \(\mathbb {R}^n\).
V. Serov
semanticscholar +3 more sources
We consider what is perhaps the most important of all partial differential operators, theLaplace operator (Laplacian) on \(\mathbb {R}^n\).
V. Serov
semanticscholar +3 more sources
Mathematical methods in the applied sciences, 2020
The paper deals with the following Kirchhoff‐type problem M∬ℝ2N1p(x,y)|v(x)−v(y)|p(x,y)|x−y|N+p(x,y)s(x,y)dxdy(−Δ)p(·)s(·)v(x)=μg(x,v)+|v|r(x)−2vinΩ,v=0inℝN\Ω, where M models a Kirchhoff coefficient, (−Δ)p(·)s(·) is a variable s(·)‐order p(·)‐fractional ...
J. Zuo, Tianqing An, A. Fiscella
semanticscholar +1 more source
The paper deals with the following Kirchhoff‐type problem M∬ℝ2N1p(x,y)|v(x)−v(y)|p(x,y)|x−y|N+p(x,y)s(x,y)dxdy(−Δ)p(·)s(·)v(x)=μg(x,v)+|v|r(x)−2vinΩ,v=0inℝN\Ω, where M models a Kirchhoff coefficient, (−Δ)p(·)s(·) is a variable s(·)‐order p(·)‐fractional ...
J. Zuo, Tianqing An, A. Fiscella
semanticscholar +1 more source
A nonholonomic Laplace operator [PDF]
In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds.
Anatoly Vershik, V. Ya. Gershkovich
openaire +1 more source