Results 271 to 280 of about 2,296,826 (424)

Photoswitchable Conductive Metal–Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
A conductive material where the conductivity can be modulated remotely by irradiation with light is presented. It is based on films of conductive metal–organic framework type Cu3(HHTP)2 with embedded photochromic molecules such as azobenzene, diarylethene, spiropyran, and hexaarylbiimidazole in the pores.
Yidong Liu   +5 more
wiley   +1 more source

Clc-db: an open-source online database of chiral ligands and catalysts. [PDF]

open access: yesJ Cheminform
Yu G   +6 more
europepmc   +1 more source

Flexible Leaf‐Like Fuel Cell From Plasmonic Janus Nanosheet

open access: yesAdvanced Functional Materials, EarlyView.
A flexible leaf‐like fuel cell is fabricated by conductive gold nanowire sponge‐supported plasmonic Janus nanosheet, which can generate a power of 8.93 mW cm⁻2 with less than 10% performance deterioration even being bent or twisted. Further assembly in a tree‐like layout demonstrates omnidirectional light harvesting capability and wind resistance ...
Yifeng Huang   +3 more
wiley   +1 more source

f‐p‐d Gradient Orbital Coupling Induced Spin State Enhancement of Atomic Fe Sites for Efficient and Stable Oxygen Reduction Reaction

open access: yesAdvanced Functional Materials, EarlyView.
The f‐p‐d (Eu─O─Fe) gradient orbital coupling induces electron delocalization and the introduced f‐band of Eu shifts the spin state of the Fe center in FePc from low‐spin to intermediate‐spin. This strategy simultaneously enhances oxygen reduction reaction (ORR) activity, reaction kinetics, and stability, resulting in superior ORR performance and ...
Ruiqi Cheng   +7 more
wiley   +1 more source

Optimizing Angiopep‐2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments

open access: yesAdvanced Functional Materials, EarlyView.
The Angiopep‐2 peptide density on polymeric nanoparticles significantly impacts blood–brain barrier (BBB) penetration. This study explores this nuanced relationship using various in vitro models and in vivo assays, revealing that dynamic models better predict BBB penetration.
Weisen Zhang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy