Results 241 to 250 of about 793,163 (329)

Deep Learning‐Assisted Coherent Raman Scattering Microscopy

open access: yesAdvanced Intelligent Discovery, EarlyView.
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu   +4 more
wiley   +1 more source

Structure and Spectroscopic Characterisation of Phenanthroline‐Based Iodobismuthate(III) Complexes Utilised for Raw Acoustic Signal Classification

open access: yesAdvanced Intelligent Discovery, EarlyView.
Memristors based on trimethylsulfonium (phenanthroline)tetraiodobismuthate have been utilised as a nonlinear node in a delayed feedback reservoir. This system allowed an efficient classification of acoustic signals, namely differentiation of vocalisation of the brushtail possum (Trichosurus vulpecula).
Ewelina Cechosz   +4 more
wiley   +1 more source

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

Self‐Driving Laboratory Optimizes the Lower Critical Solution Temperature of Thermoresponsive Polymers

open access: yesAdvanced Intelligent Discovery, EarlyView.
A low‐cost, self‐driving laboratory is developed to democratize autonomous materials discovery. Using this "frugal twin" hardware architecture with Bayesian optimization, the platform rapidly converges to target lower critical solution temperature (LCST) values while self‐correcting from off‐target experiments, demonstrating an accessible route to data‐
Guoyue Xu, Renzheng Zhang, Tengfei Luo
wiley   +1 more source

Comparison of DeePMD, MTP, GAP, ACE and MACE Machine‐Learned Potentials for Radiation‐Damage Simulations: A User Perspective

open access: yesAdvanced Intelligent Discovery, EarlyView.
The authors evaluated six machine‐learned interatomic potentials for simulating threshold displacement energies and tritium diffusion in LiAlO2 essential for tritium production. Trained on the same density functional theory data and benchmarked against traditional models for accuracy, stability, displacement energies, and cost, Moment Tensor Potential ...
Ankit Roy   +8 more
wiley   +1 more source

Large Herbivores in the Wildwood and in Modern Naturalistic Grazing Systems [PDF]

open access: yes, 2005
Buckland, Paul C.   +3 more
core  

Gaussian Process Regression–Neural Network Hybrid with Optimized Redundant Coordinates: A New Simple Yet Potent Tool for Scientist's Machine Learning Toolbox

open access: yesAdvanced Intelligent Discovery, EarlyView.
A machine learning method, opt‐GPRNN, is presented that combines the advantages of neural networks and kernel regressions. It is based on additive GPR in optimized redundant coordinates and allows building a representation of the target with a small number of terms while avoiding overfitting when the number of terms is larger than optimal.
Sergei Manzhos, Manabu Ihara
wiley   +1 more source

A feasibility study on Oat concentrates as a single source of protein for production of meat analogues.

open access: yesLWT
S. Gaber   +4 more
semanticscholar   +1 more source

Toward Predictable Nanomedicine: Current Forecasting Frameworks for Nanoparticle–Biology Interactions

open access: yesAdvanced Intelligent Discovery, EarlyView.
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova   +4 more
wiley   +1 more source

Interpretability and Representability of Commutative Algebra, Algebraic Topology, and Topological Spectral Theory for Real‐World Data

open access: yesAdvanced Intelligent Discovery, EarlyView.
This article investigates how persistent homology, persistent Laplacians, and persistent commutative algebra reveal complementary geometric, topological, and algebraic invariants or signatures of real‐world data. By analyzing shapes, synthetic complexes, fullerenes, and biomolecules, the article shows how these mathematical frameworks enhance ...
Yiming Ren, Guo‐Wei Wei
wiley   +1 more source

Home - About - Disclaimer - Privacy