Results 171 to 180 of about 860,607 (312)

Bioaccumulationand Biotransformation of TriazolePesticides in Rice (Oryza sativa L.):Quantitative Structure–Activity Relationship, Metabolic Pathways,and Toxicity Assessment

open access: green
Lu Liu (171341)   +8 more
openalex   +1 more source

Antibiofilm activity of a chionodracine‐derived peptide by NMR‐based metabolomics of cell‐free supernatant of Acinetobacter baumannii clinical strains

open access: yesFEBS Open Bio, EarlyView.
KHS‐Cnd peptide is able to impair biofilm formation and disaggregate mature biofilms in Acinetobacter baumannii clinical isolates. Differences in extracellular metabolites reflect changes in biofilm metabolism due to KHS‐Cnd treatment. Among the differentially represented extracellular metabolites upon KHS‐Cnd treatment, the significantly altered ...
Fernando Porcelli   +9 more
wiley   +1 more source

FAM3 Cytokine-like Proteins, Their Putative Receptors and Signaling Pathways in Metabolic Diseases and Cancers

open access: green
Jose E. Belizario   +5 more
openalex   +2 more sources

SIRT4 positively regulates autophagy via ULK1, but independently of HDAC6 and OPA1

open access: yesFEBS Open Bio, EarlyView.
Cells expressing SIRT4 (H161Y), a catalytically inactive mutant of the sirtuin SIRT4, fail to upregulate LC3B‐II and exhibit a reduced autophagic flux under stress conditions. Interestingly, SIRT4(H161Y) promotes phosphorylation of ULK1 at S638 and S758 that are associated with inhibition of autophagy initiation.
Isabell Lehmkuhl   +13 more
wiley   +1 more source

Metformin promotes mitochondrial integrity through AMPK‐signaling in Leber's hereditary optic neuropathy

open access: yesFEBS Open Bio, EarlyView.
Metformin mediates mitochondrial quality control in Leber's hereditary optic neuropathy (LHON) fibroblasts carrying mtDNA mutations. At therapeutic levels, metformin activates AMPK signaling to restore mitochondrial dynamics by promoting fusion and restraining fission, while preserving mitochondrial mass, enhancing autophagy/mitophagy and biogenesis ...
Chatnapa Panusatid   +3 more
wiley   +1 more source

FGFR Like1 drives esophageal cancer progression via EMT, PI3K/Akt, and notch signalling: insights from clinical data and next‐generation sequencing analysis

open access: yesFEBS Open Bio, EarlyView.
Clinical analysis reveals significant dysregulation of FGFRL1 in esophageal cancer (EC) patients. RNAi‐coupled next‐generation sequencing (NGS) and in vitro study reveal FGFRL1‐mediated EC progression via EMT, PI3K/Akt, and Notch pathways. Functional assays confirm its role in tumor growth, migration, and invasion.
Aprajita Srivastava   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy