Results 61 to 70 of about 122,026 (216)

Enhanced Activities of OCT4 and SOX2 Promote Epigenetic Reprogramming by Shortening G1 Phase

open access: yesAdvanced Science, EarlyView.
Fusing the VP16 domain to OCT4 and SOX2 (OvSvK) enhances iPSC generation by activating downstream targets, including those regulating the cell cycle. This accelerates reprogramming by shortening the G1 phase and reducing H3K27me3 levels. Modulating Ccnd1, Cdkn2a, and Ccne1 improves efficiency, linking cell cycle to epigenetic remodeling.
Lin Guo   +17 more
wiley   +1 more source

Pyruvate Carboxylase in Macrophages Aggravates Atherosclerosis by Regulating Metabolism Reprogramming to Promote Inflammatory Responses Through the Hypoxia‐Inducible Factor‐1 Signaling Pathway

open access: yesAdvanced Science, EarlyView.
This study investigates the role of macrophage pyruvate carboxylase (PC) in atherosclerosis (AS) demonstrating that PC upregulation in macrophages promotes metabolism reprogramming to enhance inflammatory responses via the HIF‐1 signaling pathway.
Ling‐Na Zhao   +17 more
wiley   +1 more source

Adducin‐1 Facilitates Influenza Virus Endosomal Trafficking and Uncoating by Regulating Branched Actin Dynamics and Myosin IIB Activity

open access: yesAdvanced Science, EarlyView.
In this study, a novel mechanism is unveiled by which ADD1, acting as a molecular switch, coordinates actin branch dynamics and the transport of endocytic viruses and cargoes. Phosphorylation of ADD1 at Ser726 reduces actin branch density, enhancing endosome fusion and attachment to microtubules.
Meijun Jiang   +10 more
wiley   +1 more source

METTL14‐Induced M6A Methylation Increases G6pc Biosynthesis, Hepatic Glucose Production and Metabolic Disorders in Obesity

open access: yesAdvanced Science, Volume 12, Issue 22, June 12, 2025.
It is shown that obesity is associated with increases in hepatic METTL14 and m6A methylation of G6pc transcript. YTHDF1 and YTHDF3 bind to m6A‐marked G6pc mRNA to increase its synthesis. Hepatocyte‐specific deletion of Mettl14 decreases G6pc m6A methylation, G6pc biosynthesis, and G6pc‐mediated gluconeogenesis, alleviating glucose metabolic defects in ...
Qiantao Zheng   +6 more
wiley   +1 more source

Ethylene‐Activated E3 Ubiquitin Ligase MdEAEL1 Promotes Apple Fruit Softening by Facilitating the Dissociation of Transcriptional Repressor Complexes

open access: yesAdvanced Science, Volume 12, Issue 22, June 12, 2025.
Ethylene‐activated MdEAEL1 mediates the disassembly of the MdZFP3‐MdTPL4‐MdHDA19 transcriptional repression complex, upregulating the histone acetylation levels in the promoter regions of cell wall degradation‐related genes, consequently promoting softening during storage.
Tong Li   +8 more
wiley   +1 more source

PRMT1‐Mediated SWI/SNF Complex Recruitment via SMARCC1 Drives IGF2BP2 Transcription to Enhance Carboplatin Resistance in Head and Neck Squamous Cell Carcinoma

open access: yesAdvanced Science, Volume 12, Issue 22, June 12, 2025.
PRMT1 drives carboplatin resistance and tumor progression in head and neck squamous cell carcinoma (HNSCC) through a novel, methyltransferase‐independent mechanism. It recruits the SWI/SNF complex to activate IGF2BP2, promoting tumor growth and carboplatin resistance. PBX2 upregulates PRMT1, reinforcing this pathway. This study uncovers a non‐catalytic
Shixian Liu   +22 more
wiley   +1 more source

Dual‐Locking the SARS‐CoV‐2 Spike Trimer: An Amphipathic Molecular “Bolt” Stabilizes Conserved Druggable Interfaces for Coronavirus Inhibition

open access: yesAdvanced Science, EarlyView.
A new amphipathic molecule, S416 is discovered, that locks the SARS‐CoV‐2 spike protein in its closed state, blocking viral entry. S416 acts as a molecular bolt, binding six sites: three between adjacent RBDs and three connecting NTDs to RBDs. This dual‐locking mechanism stiffens the spike structure and reduces its flexibility.
Shiliang Li   +21 more
wiley   +1 more source

Immunotyping the Tumor Microenvironment Reveals Molecular Heterogeneity for Personalized Immunotherapy in Cancer

open access: yesAdvanced Science, EarlyView.
This study develops TMEclassifier, a machine‐learning tool that classifies cancers into three distinct subtypes—Immune exclusive (IE), immune suppressive (IS), and immune activated (IA)—which exhibit significant heterogeneity and necessitate customized therapeutic strategies.
Dongqiang Zeng   +27 more
wiley   +1 more source

Home - About - Disclaimer - Privacy