Results 111 to 120 of about 542,693 (329)
This research investigates the feasibility of 3D‐printing of a bacteriophage‐containing hydrogel made of alginate and methylcellulose. The printed hydrogels steadily release active bacteriophages for up to 35 days which is beneficial to treat implant‐associated infections.
Corina Vater +8 more
wiley +1 more source
Harnessing Next‐Generation 3D Cancer Models to Elucidate Tumor‐Microbiome Crosstalk
Centralizes the microbiome within 3D tumor‐microbiome model platforms, including spheroids, organoids, 3D‐bioprinted constructs, and microfluidic chips, each enabling structured host‐tumor‐microbe studies. These systems support bacterial colonization, facilitating investigation of microbial impacts on tumor growth, immunity, and therapy. The microbiome
Marina Green Buzhor +12 more
wiley +1 more source
Dissolvable microneedle (MN) device containing Bacillus paralicheniformis. The polymeric matrix encapsulates and protects the bacteria, preserving their viability while enabling in situ production and release of γ‐polyglutamic acid. The bacteria are delivered into the skin via 500 µm‐long microneedles, and remain detectable on the skin 24 h post ...
Caroline Hali Alperovitz +3 more
wiley +1 more source
The microbiome in patients with atopic dermatitis. [PDF]
As an interface with the environment, the skin is a complex ecosystem colonized by many microorganisms that coexist in an established balance. The cutaneous microbiome inhibits colonization with pathogens, such as Staphylococcus aureus, and is a crucial ...
Gallo, Richard L +7 more
core
Gradients of Aliveness and Engineering: A Taxonomy of Fungal Engineered Living Materials
This paper explores the potential of fungal engineered living materials (ELMs), examining fungal biology and growth mechanisms, which underpin their development. It presents a classification framework based on aliveness, scaffold composition, and engineering degree. Unique properties such as self‐healing, biosensing, and bioremediation are highlighted,
Elise Elsacker +5 more
wiley +1 more source
From the moment of birth, the human body plays host to a rich diversity of microbes. Body sites such as the skin, the gut and the mouth support communities of microorganisms (collectively known as the microbiome) that are both numerous and diverse.
Meehan, Conor J. +2 more
openaire +4 more sources
Probiotic‐Based Materials as Living Therapeutics
Recent advances in Engineered Living Materials are highlighted, integrating synthetic biology and advanced materials, with a focus on probiotic‐based therapeutics. Probiotic Living Materials hold great potential for biosensing, infection treatment, osteogenesis, wound healing, vaginal and gastrointestinal disorders, and cancer therapy. breakthroughs in
Laura Sabio +2 more
wiley +1 more source
MXene and MBene nanomaterials show significant potential in addressing critical challenges in biomedicine, applied biology, agriculture, and the environment. From a nano‐agricultural perspective, this relatively young field has witnessed emerging advances towards applications for plant‐immunoengineering, biostimulation, and controlled delivery ...
Alireza Rafieerad +3 more
wiley +1 more source
The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also ...
Lorraine Anne Draper +6 more
doaj +1 more source
The uncovering of microbes throughout the human body has changed the way health and disease is viewed. The fact that a urinary tract microbiome exists, irrespective of symptomatology, raises questions on what the microbes are doing. The microbial profile–associated bladder cancer compared to healthy controls suggests the organisms may contribute to ...
Dewar, Malcolm +5 more
openaire +4 more sources

