Results 251 to 260 of about 946,440 (355)

Soybean Protein Substitute for Milk Protein in Milk Replacers for Suckling Calves

open access: bronze, 1972
Zafrira Nitsan   +3 more
openalex   +1 more source

ZNRD2 Mediated Nucleoprotein Aggregation Impairs Respiratory Syncytial Virus Replication

open access: yesAdvanced Science, EarlyView.
During RSV infection, nucleoprotein (N) forms RNA‐bound oligomers. The host protein ZNRD2 binds to these oligomers, promoting their transition into insoluble aggregates. These aggregates simultaneously sequester functional N to restrict viral production and disrupt chaperonin assembly quality control by interfering with ZNRD2's role as an adaptor ...
Haiwu Zhou   +8 more
wiley   +1 more source

Effect of Fortification with High-Milk-Protein Preparations on Yogurt Quality. [PDF]

open access: yesFoods
Żulewska J   +6 more
europepmc   +1 more source

Modification of Milk Proteins by Psychrotrophic Bacteria

open access: bronze, 1977
N.J. DeBeukelar   +3 more
openalex   +1 more source

Exclusive Breastfeeding Drives AMPK‐Dependent Thermogenic Memory in BAT and Promotes Long‐Term Metabolic Benefits in Offspring

open access: yesAdvanced Science, EarlyView.
Exclusive breastfeeding establishes a thermogenic memory in brown adipose tissue by activating the HIF1AN/AMPK/α‐ketoglutarate axis via milk‐derived extracellular vesicles enriched in miR‐125a‐5p. This programming preserves metabolic health, while αKG supplementation restores BAT function under mixed feeding, offering strategies to mitigate the ...
Ningxi Wu   +13 more
wiley   +1 more source

Mitochondrial CISD1 Modulates Microglial Metabolic Reprogramming to Drive Stress Susceptibility in Mice

open access: yesAdvanced Science, EarlyView.
CDGSH iron sulfur domain 1 (CISD1) mitigates oxidative stress by promoting NADH oxidation and Coenzyme Q (CoQ) reduction. Under chronic stress, elevated CISD1 expression in microglia enhances NAD⁺ production, thereby increasing GAPDH activity and glycolytic flux, while reducing ATP synthesis by inhibiting proton transfer from mitochondrial complexes I ...
Wanting Dong   +5 more
wiley   +1 more source

DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss

open access: yesAdvanced Science, EarlyView.
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy