Results 51 to 60 of about 664,986 (295)
PARP10 (ARTD10) modulates mitochondrial function. [PDF]
Poly(ADP-ribose) polymerase (PARP)10 is a PARP family member that performs mono-ADP-ribosylation of target proteins. Recent studies have linked PARP10 to metabolic processes and metabolic regulators that prompted us to assess whether PARP10 influences ...
Judit Márton +8 more
doaj +1 more source
31 Relationship of Mitochondrial Phenotype to Muscle Function and Performance [PDF]
Sarah H White-Springer
openalex +1 more source
This study reveals how the mitochondrial protein Slm35 is regulated in Saccharomyces cerevisiae. The authors identify stress‐responsive DNA elements and two upstream open reading frames (uORFs) in the 5′ untranslated region of SLM35. One uORF restricts translation, and its mutation increases Slm35 protein levels and mitophagy.
Hernán Romo‐Casanueva +5 more
wiley +1 more source
Understanding structure, function, and mutations in the mitochondrial ATP synthase
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP
Ting Xu +2 more
doaj +1 more source
Mitochondrial peptides modulate mitochondrial function during cellular senescence
Cellular senescence is a complex cell fate response that is thought to underlie several age-related pathologies. Despite a loss of proliferative potential, senescent cells are metabolically active and produce energy-consuming effectors, including senescence-associated secretory phenotypes (SASPs).
Kim, Su-Jeong +7 more
openaire +2 more sources
Plant mitochondrial function during anaerobiosis [PDF]
Under hypoxic conditions, plant mitochondria preserve the capacity to oxidize external NADH, NADPH and tricarboxylic acid cycle substrates. Nitrite serves as an alternative electron acceptor at the level of cytochrome oxidase, with possibly complex III and the alternative oxidase also being involved.
Abir U, Igamberdiev, Robert D, Hill
openaire +2 more sources
Structural biology of ferritin nanocages
Ferritin is a conserved iron‐storage protein that sequesters iron as a ferric mineral core within a nanocage, protecting cells from oxidative damage and maintaining iron homeostasis. This review discusses ferritin biology, structure, and function, and highlights recent cryo‐EM studies revealing mechanisms of ferritinophagy, cellular iron uptake, and ...
Eloise Mastrangelo, Flavio Di Pisa
wiley +1 more source
This study explores salivary RNA for breast cancer (BC) diagnosis, prognosis, and follow‐up. High‐throughput RNA sequencing identified distinct salivary RNA signatures, including novel transcripts, that differentiate BC from healthy controls, characterize histological and molecular subtypes, and indicate lymph node involvement.
Nicholas Rajan +9 more
wiley +1 more source
Bridging the gap: Multi‐stakeholder perspectives of molecular diagnostics in oncology
Although molecular diagnostics is transforming cancer care, implementing novel technologies remains challenging. This study identifies unmet needs and technology requirements through a two‐step stakeholder involvement. Liquid biopsies for monitoring applications and predictive biomarker testing emerge as key unmet needs. Technology requirements vary by
Jorine Arnouts +8 more
wiley +1 more source
Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN) is the third most common genetically-defined subtype of Neurodegeneration with Brain Iron Accumulation (NBIA), a group of rare, clinically heterogeneous disorders. The MPAN pathomechanism,
Barbara Pakula +13 more
doaj +1 more source

