Results 81 to 90 of about 228,744 (286)

Exploring kinase DFG loop conformational stability with AlphaFold2-RAVE [PDF]

open access: yesarXiv, 2023
Kinases compose one of the largest fractions of the human proteome, and their misfunction is implicated in many diseases, in particular cancers. The ubiquitousness and structural similarities of kinases makes specific and effective drug design difficult. In particular, conformational variability due to the evolutionarily conserved DFG motif adopting in
arxiv  

The Reconstruction of Peripheral Auditory Circuit: Recent Advances and Future Challenges

open access: yesAdvanced Science, EarlyView.
This paper summarizes the potential of biomaterials, stem cells, and gene editing technologies in the regeneration of inner ear hair cells, spiral ganglion neurons, and inner ear organoids. Challenges and potential developments are discussed and explored.
Zhe Li   +3 more
wiley   +1 more source

Rational Design of Inner Ear Drug Delivery Systems

open access: yesAdvanced Science, EarlyView.
Hearing loss is a common disease affecting many people, and inner ear lesions are one of the most important causes. This review focuses on the treatment of inner ear hearing loss by drug delivery systems. It includes the current methods and technologies developed, and it predicts possible directions.
Xiayidan Maimaitikelimu   +5 more
wiley   +1 more source

Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase. [PDF]

open access: yesPLoS ONE, 2013
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several
Xiangpei Kong   +5 more
doaj   +1 more source

Advances in Electrical Materials for Bone and Cartilage Regeneration: Developments, Challenges, and Perspectives

open access: yesAdvanced Science, EarlyView.
This review explores the challenges of treating bone and cartilage defects, emphasizing the role of endogenous electric fields in bone and cartilage regeneration. It highlights recent advancements in electroactive biomaterials, including nanogenerators, piezoelectric materials, triboelectric scaffold, and zwitterionic hydrogels.
Yubin Yao   +4 more
wiley   +1 more source

Accuracy of position determination in Ca$^{2+}$ signaling [PDF]

open access: yes, 2019
A living cell senses its environment and responds to external signals. In this work, we study theoretically, the precision at which cells can determine the position of a spatially localized transient extracellular signal. To this end, we focus on the case, where the stimulus is converted into the release of a small molecule that acts as a second ...
arxiv   +1 more source

LincNEAT1 Encoded‐NEAT1‐31 Promotes Phagocytosis by Directly Activating the Aurora‐A–PI3K–AKT Pathway

open access: yesAdvanced Science, EarlyView.
LincNEAT1 Encoded‐NEAT1‐31 micropeptide directly binds with Aurora‐A and enhanced AKT pathways to pormotes phagocytosis against multi cancer cells. Abstract Macrophages play vital roles in innate and adaptive immunity, and their essential functions are mediated by phagocytosis and antigen presentation.
Jie Li   +8 more
wiley   +1 more source

The Role of Big Mitogen-Activated Protein Kinase 1 (BMK1) / Extracellular Signal-Regulated Kinase 5 (ERK5) in the Pathogenesis and Progression of Atherosclerosis

open access: yesJournal of Pharmacological Sciences, 2012
Big mitogen-activated protein kinase 1 (BMK1), also known as extracellular signal-regulated kinase 5 (ERK5), is a newly identified member of the mitogen-activated protein (MAP) kinase family.
Masanori Yoshizumi   +6 more
doaj  

Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE [PDF]

open access: yes
Small molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2's strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore,
arxiv   +1 more source

PABPN1 Couples the Polyadenylation and Translation of Maternal Transcripts to Mouse Oocyte Meiotic Maturation

open access: yesAdvanced Science, EarlyView.
This study reveals that cytoplasmic PABPN1 is essential for mouse oocyte meiotic maturation by coordinating polyadenylation, translation, and degradation of maternal mRNAs. Pabpn1 knockout disrupts CDK1 activation, spindle formation, and chromosome alignment by impairing maturation‐promoting factor (MPF) regulation and BTG4‐mediated deadenylation ...
Xing‐Xing Dai   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy