Results 61 to 70 of about 596,923 (316)
Probing molecular motion by NMR
Recently developed solution NMR methods for measuring 2H, 13C, and 15N spin relaxation, coupled with biosynthetic isotopic enrichment, permit the characterization of backbone and sidechain dynamical properties of proteins on picosecond/nanosecond and microsecond/millisecond timescales. Theoretical interpretations of the relaxation data provide insights
openaire +2 more sources
This perspective highlights emerging insights into how the circadian transcription factor CLOCK:BMAL1 regulates chromatin architecture, cooperates with other transcription factors, and coordinates enhancer dynamics. We propose an updated framework for how circadian transcription factors operate within dynamic and multifactorial chromatin landscapes ...
Xinyu Y. Nie, Jerome S. Menet
wiley +1 more source
Background Hereditary ataxias (HAs) are neurodegenerative disorders characterized by progressive cerebellar degeneration, with autosomal dominant spinocerebellar ataxias (SCAs) representing the most prevalent subtype. SCA3, the most common form worldwide,
Chang Liu +12 more
doaj +1 more source
Preparation of Hydrophobic Film by Electrospinning for Rapid SERS Detection of Trace Triazophos
For real application, it is an urgent demand to fabricate stable and flexible surface-enhanced Raman scattering (SERS) substrates with high enhancement factors in a large-scale and facile way. Herein, by using the electrospinning technique, a hydrophobic
Fei Shao +8 more
doaj +1 more source
Real‐time assay of ribonucleotide reductase activity with a fluorescent RNA aptamer
Ribonucleotide reductases (RNR) synthesize DNA building blocks de novo, making them crucial in DNA replication and drug targeting. FLARE introduces the first single‐tube real‐time coupled RNR assay, which enables isothermal tracking of RNR activity at nanomolar enzyme levels and allows the reconstruction of allosteric regulatory patterns and rapid ...
Jacopo De Capitani +4 more
wiley +1 more source
Disordered but rhythmic—the role of intrinsic protein disorder in eukaryotic circadian timing
Unstructured domains known as intrinsically disordered regions (IDRs) are present in nearly every part of the eukaryotic core circadian oscillator. IDRs enable many diverse inter‐ and intramolecular interactions that support clock function. IDR conformations are highly tunable by post‐translational modifications and environmental conditions, which ...
Emery T. Usher, Jacqueline F. Pelham
wiley +1 more source
A reversible photochromic covalent organic framework
Covalent organic frameworks are a type of crystalline porous materials that linked through covalent bond, and they have numerous potential applications in adsorption, separation, catalysis, and more.
Xue-Tian Li +8 more
doaj +1 more source
Protein pyrophosphorylation by inositol pyrophosphates — detection, function, and regulation
Protein pyrophosphorylation is an unusual signaling mechanism that was discovered two decades ago. It can be driven by inositol pyrophosphate messengers and influences various cellular processes. Herein, we summarize the research progress and challenges of this field, covering pathways found to be regulated by this posttranslational modification as ...
Sarah Lampe +3 more
wiley +1 more source
Poly-o-phenylenediamine modified TiO2 nanocomposites were successfully synthesized via an ‘in situ’ oxidative polymerization method. The modified nanocomposites were characterized by BET, XRD, TEM, FT-IR, TGA, XPS, EA and UV-Vis DRS.
Chuanxi Yang +7 more
doaj +1 more source
The role of histone modifications in transcription regulation upon DNA damage
This review discusses the critical role of histone modifications in regulating gene expression during the DNA damage response (DDR). By modulating chromatin structure and recruiting repair factors, these post‐translational modifications fine‐tune transcriptional programmes to maintain genomic stability.
Angelina Job Kolady, Siyao Wang
wiley +1 more source

