Results 231 to 240 of about 472,869 (430)

Microglial MS4A4A Protects against Epileptic Seizures in Alzheimer's Disease

open access: yesAdvanced Science, EarlyView.
This study has unveiled significant new insights into the role of MS4A4A in Alzheimer's disease‐related epilepsy, highlighting its impact on microglial phagocytosis, mitochondrial metabolism, and cytoskeleton, and demonstrating its therapeutic potential in epilepsy management.
Meng Jiang   +10 more
wiley   +1 more source

Communications Among Neurocytes in Parkinson's Disease Regulated by Differential Metabolism and Blood‐Brain Barrier Traversing of Chiral Gold Cluster‐MOF Integrated Nanoparticles

open access: yesAdvanced Science, EarlyView.
This study have loaded chiral gold nanoclusters onto the inner and outer surfaces of ZIF and uncovers the biodistribution, metabolic variances, and therapeutic mechanism of chiral nanoparticles, providing deep insights into the nanobiological effects of chiral anti‐inflammatory nanomedicines in PD therapy for future clinical transformation.
Junyang Chen   +7 more
wiley   +1 more source

Synergistic Modulating of Mitochondrial Transfer and Immune Microenvironment to Attenuate Discogenic Pain

open access: yesAdvanced Science, EarlyView.
Gallic acid (GA) and copper ions self‐assemble to form nanoparticles, which are then modified with mitochondrial targeting peptides and gap junction modulator. These nanoparticles scavenge mitochondrial reactive oxygen species to induce M2 polarization and enhance intercellular mitochondrial transfer.
Xinzhou Wang   +13 more
wiley   +1 more source

MAGEA6 Engages a YY1‐Dependent Transcription to Dictate Perineural Invasion in Colorectal Cancer

open access: yesAdvanced Science, EarlyView.
This study investigates the role of MAGEA6 in perineural invasion (PNI) in colorectal cancer (CRC). MAGEA6 promotes CRC invasiveness by inhibiting YY1 ubiquitination, enhancing CXCL1 secretion, and recruiting Schwann cells. These findings highlight the potential of targeting the MAGEA6/YY1/CXCL1 axis for therapeutic strategies against PNI and tumor ...
Hao Wang   +9 more
wiley   +1 more source

Ageing and neurotransmitters.

open access: yesNihon Naika Gakkai Zasshi, 1985
Shigenobu Nakamura, Satoru Miyata
openaire   +4 more sources

Generation of Neural Organoids and Their Application in Disease Modeling and Regenerative Medicine

open access: yesAdvanced Science, EarlyView.
Neural organoids provide a versatile platform for neurological research. Advances in organoid technology have partially achieved human neural tissue complexity in terms of tissue structure, cell diversity, and neural signaling, offering insights into neural disorders and regenerative strategies. Technology advances from biomaterials, bio‐manufacturing,
Ruiqi Huang   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy