Results 111 to 120 of about 194,899 (239)

Light‐Harvesting Nanomaterials Based on Dyes for Energy Transfer and Amplified Biosensing

open access: yesAdvanced Materials, EarlyView.
Light harvesting (LH) in plants inspires researchers to develop artificial LH nanomaterials. Here, LH nanomaterials based on organic dyes are reviewed, considering fundamental challenges on aggregation‐caused quenching, excitation energy transfer, and exciton migration length.
Andrey S. Klymchenko   +2 more
wiley   +1 more source

Structural alphabets for conformational analysis of nucleic acids [PDF]

open access: yesActa Crystallographica Section A Foundations and Advances, 2019
Bohdan Schneider   +2 more
openaire   +1 more source

Mussel‐Inspired Molecular Strategies for Fabricating Functional Materials With Underwater Adhesion and Self‐Healing Properties

open access: yesAdvanced Materials, EarlyView.
This review systematically examines the nanomechanical mechanisms of mussel‐inspired molecular interactions, primarily investigated by direct force measurement techniques such as surface forces apparatus and atomic force microscopy. The macroscopic adhesive and self‐healing performances of mussel‐inspired functional materials, including coacervates ...
Pan Huang, Hongjian Zhang, Hongbo Zeng
wiley   +1 more source

Harnessing Photo‐Energy Conversion in Nanomaterials for Precision Theranostics

open access: yesAdvanced Materials, EarlyView.
Harnessing photo‐energy conversion in nanomaterials enables precision theranostics through light‐driven mechanisms such as photoluminescence, photothermal, photoelectric, photoacoustic, photo‐triggered surface‐enhanced Raman scattering (SERS), and photodynamic processes. This review explores six fundamental principles of photo‐energy conversion, recent
Jingyu Shi   +4 more
wiley   +1 more source

The Rise of Mechanobiology for Advanced Cell Engineering and Manufacturing

open access: yesAdvanced Materials, EarlyView.
With the growing demand for cell‐based therapies, efficient cellular engineering is crucial. This review calls for greater recognition of mechanobiology principles applied through advanced biomaterial designs, mechanical confinement, and highlights recent advances using micro/nanotechnologies to enhance cell manufacturing.
Huan Ting Ong   +8 more
wiley   +1 more source

Designing the Next Generation of Biomaterials through Nanoengineering

open access: yesAdvanced Materials, EarlyView.
Nanoengineering enables precise control over biomaterial interactions with living systems by tuning surface energy, defects, porosity, and crystallinity. This review highlights how these nanoscale design parameters drive advances in regenerative medicine, drug delivery, bioprinting, biosensing, and bioimaging, while outlining key translational ...
Ryan Davis Jr.   +3 more
wiley   +1 more source

Engineered Plasmonic and Fluorescent Nanomaterials for Biosensing, Motion, Imaging, and Therapeutic Applications

open access: yesAdvanced Materials, EarlyView.
A schematic illustration of how noble metals can be used to create nanoparticles (NPs) or nanoclusters (NCs). Noble metal NPs, due to their plasmonic properties, enable photothermal therapy and surface‐enhanced Raman scattering (SERS). In contrast, NCs, which lack a plasmonic resonance band, exhibit fluorescence, making them ideal for bioimaging ...
David Esporrín‐Ubieto   +3 more
wiley   +1 more source

The XNA alphabet. [PDF]

open access: yesNucleic Acids Res
Chaput JC, Egli M, Herdewijn P.
europepmc   +1 more source

Universal Method for Covalent Attachment of Hydrogels to Diverse Polymeric Surfaces for Biomedical Applications

open access: yesAdvanced Materials, EarlyView.
A universal, reagent‐free strategy is presented for covalently attaching hydrogels to diverse polymeric substrates through reactive oxygen species. The scalable, linker‐free approach enables robust adhesion and broad material compatibility, advancing the fabrication of hybrid solid–hydrogel systems for next‐generation biomedical devices and bioprinting
Masoud Zhianmanesh   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy