Results 161 to 170 of about 3,177,241 (350)

POM‐Based Water Splitting Catalyst Under Acid Conditions Driven by Its Assembly on Carbon Nanotubes

open access: yesAdvanced Materials, EarlyView.
A newly‐engineered POM‐based electrocatalyst incorporating non‐innocent counter cations exhibits fast kinetics for either the OER or HER under strongly acidic conditions (1 m H2SO4), depending on whether it is assembled on carbon nanotubes (1@CNT) or physically mixed with them (1/CNT). In water‐splitting tests using a two‐electrode setup, these systems
Eugenia P. Quirós‐Díez   +8 more
wiley   +1 more source

Large-scale functional assessment of variants of the potassium channel Kir2.1: Clinical and comparative insights. [PDF]

open access: yesJ Biol Chem
Anderson CL   +9 more
europepmc   +1 more source

Archeo‐Inspiration from the Cultural History of Glass: Historic Accounts, Anecdotes and Hard Facts as Challenges to Modern Material Science

open access: yesAdvanced Materials, EarlyView.
Glass, historically valued for its purity and durability, has long inspired artists and societies. This article introduces the concept of “Archeo‐Inspiration”, drawing on cultural and historical contexts of glass to guide future material innovations.
Eva von Contzen   +3 more
wiley   +1 more source

A physiologically-relevant intermediate state structure of a voltage-gated potassium channel. [PDF]

open access: yesNat Commun
Kyriakis E   +11 more
europepmc   +1 more source

Electrically Readable Lateral Flow Assay Using Organic Transistors for Diagnostic Applications

open access: yesAdvanced Materials, EarlyView.
Electrolyte‐gated organic field‐effect transistors (EGOFETs) are integrated with lateral flow (LF) paper fluidics to create a reusable, portable, and low‐cost point‐of‐care (PoC) diagnostic test. The devices are validated for Human Immunoglobulin G detection, achieving high sensitivity (0.1 fm), selectivity, and reproducibility with rapid results in 20–
María Jesús Ortiz‐Aguayo   +4 more
wiley   +1 more source

Porous Iridium Oxide Inverse Opal Catalysts Enable Efficient PEM Water Electrolysis

open access: yesAdvanced Materials, EarlyView.
Porous iridium‐based inverse opal (IrOx‐IO) structures are introduced as high‐performance, unsupported PEM‐WE anode catalysts. Their electrochemical behavior is analyzed through porosity/surface area tuning, voltage breakdown, and circuit modeling.
Sebastian Möhle   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy