Results 101 to 110 of about 1,804,103 (360)
Phosphatidylinositol 4‐kinase as a target of pathogens—friend or foe?
This graphical summary illustrates the roles of phosphatidylinositol 4‐kinases (PI4Ks). PI4Ks regulate key cellular processes and can be hijacked by pathogens, such as viruses, bacteria and parasites, to support their intracellular replication. Their dual role as essential host enzymes and pathogen cofactors makes them promising drug targets.
Ana C. Mendes +3 more
wiley +1 more source
The catalytic hydrogenation of CO2 to methanol represents a promising route for carbon recycling and hydrogen storage. However, the stability of current catalysts remains one of the main technological challenges.
Jose Soriano Rodríguez +5 more
doaj +1 more source
Human pol II promoter prediction: time series descriptors and machine learning [PDF]
Although several in silico promoter prediction methods have been developed to date, they are still limited in predictive performance. The limitations are due to the challenge of selecting appropriate features of promoters that distinguish them from non ...
Gangal, Rajeev, Sharma, Pankaj
core +4 more sources
Bifidobacterium bifidum establishes symbiosis with infants by metabolizing lacto‐N‐biose I (LNB) from human milk oligosaccharides (HMOs). The extracellular multidomain enzyme LnbB drives this process, releasing LNB via its catalytic glycoside hydrolase family 20 (GH20) lacto‐N‐biosidase domain.
Xinzhe Zhang +5 more
wiley +1 more source
Down-regulatory mechanism of mammea E/BB from Mammea siamensis seed extract on Wilms' Tumor 1 expression in K562 cells. [PDF]
BackgroundWilms' tumor 1 (WT1) is a biological marker for predicting leukemia progression. In this study, mammea E/BB, an active compound from Saraphi (Mammea siamensis) seed extract was examined for its effect on down-regulatory mechanism of WT1 gene ...
Ampasavate, Chadarat +6 more
core +1 more source
The role and implications of mammalian cellular circadian entrainment
At their most fundamental level, mammalian circadian rhythms occur inside every individual cell. To tell the correct time, cells must align (or ‘entrain’) their circadian rhythm to the external environment. In this review, we highlight how cells entrain to the major circadian cues of light, feeding and temperature, and the implications this has for our
Priya Crosby
wiley +1 more source
The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein [PDF]
Little is known about the regulation of the DNA damage-mediated gene expression in archaea. Here we report that the addition of actinomycin D to Sulfolobus solfataricus cultures triggers the expression of the radA paralogue sso0777.
Abella, M +5 more
core +1 more source
Molecular bases of circadian magnesium rhythms across eukaryotes
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley +1 more source
Crosstalk between the ribosome quality control‐associated E3 ubiquitin ligases LTN1 and RNF10
Loss of the E3 ligase LTN1, the ubiquitin‐like modifier UFM1, or the deubiquitinating enzyme UFSP2 disrupts endoplasmic reticulum–ribosome quality control (ER‐RQC), a pathway that removes stalled ribosomes and faulty proteins. This disruption may trigger a compensatory response to ER‐RQC defects, including increased expression of the E3 ligase RNF10 ...
Yuxi Huang +8 more
wiley +1 more source
Relationship between promoter sequence and its strength in gene expression
In this study, through various tests one theoretical model is presented to describe the relationship between promoter strength and its nucleotide sequence.
Li, Jingwei, Zhang, Yunxin
core +1 more source

