Results 51 to 60 of about 99 (99)

Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations

open access: yesAdvanced Functional Materials, EarlyView.
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan   +4 more
wiley   +1 more source

3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations

open access: yesAdvanced Functional Materials, EarlyView.
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana   +2 more
wiley   +1 more source

Bioengineering Strategies for Treating Neointimal Hyperplasia in Peripheral Vasculature: Innovations and Challenges

open access: yesAdvanced Healthcare Materials, Volume 14, Issue 7, March 14, 2025.
This review highlights emerging bioengineering strategies for treating neointimal hyperplasia in the peripheral vasculature, focusing on approaches that promote re‐endothelialization, modulate smooth muscle cell phenotype, reduce inflammation, mitigate oxidative stress, and optimize biomechanical compliance.
Nikita Wilson John   +5 more
wiley   +1 more source

Mechanically and Chemically Defined PEG Hydrogels Improve Reproducibility in Human Cardioid Development

open access: yesAdvanced Healthcare Materials, EarlyView.
Synthetic matrix metalloproteinase (MMP)‐degradable polyethylene glycol (PEG)‐based hydrogels are developed to investigate the influence of mechanical and biochemical cues on cardioid development. Matrix stiffness and cell adhesion motifs significantly regulate cardioid formation, chamber morphogenesis, contractile function, and cardioid transcriptome.
Yuanhui Song   +6 more
wiley   +1 more source

Engineering Assembloids to Mimic Graft‐Host Skeletal Muscle Interaction

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops a graft‐host skeletal muscle assembloid model combining neuromuscular organoids with tissue‐engineered constructs. Pre‐seeding decellularized muscles with myogenic cells enhances cell migration and axon invasion from the organoid. The model exhibits regenerative capacity following acute damage, advancing the understanding of human ...
Lucia Rossi   +13 more
wiley   +1 more source

Engineering the Future of Restorative Clinical Peripheral Nerve Surgery

open access: yesAdvanced Healthcare Materials, EarlyView.
What if damaged nerves could regenerate more effectively? This review unveils cutting‐edge strategies to restore nerve function, from biomaterial scaffolds and bioactive molecules to living engineered tissues. By accelerating axonal regrowth, preserving Schwann cells, and enhancing connectivity, these approaches are reshaping nerve repair—offering new ...
Justin C. Burrell   +5 more
wiley   +1 more source

Gasotransmitters in Modern Medicine: Promises and Challenges in the Use of Porous Crystalline Carriers

open access: yesAdvanced Healthcare Materials, EarlyView.
This perspective provides an overview of the growing interest in utilizing various gasotransmitters—small gaseous signaling molecules namely nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S)—for several therapeutic applications, with emphasis on the potential use of porous materials as carriers to provide safe and controlled local ...
Rosana V. Pinto   +2 more
wiley   +1 more source

Recent Applications of Mesoporous Silica Nanoparticles in Gene Therapy

open access: yesAdvanced Healthcare Materials, EarlyView.
The review summarizes the synthesis of mesoporous silica nanoparticles (MSNs) with modifiable surface properties, functionalization strategies, mechanism of therapeutic payload release, and current applications in gene therapy, focusing on their capabilities in the targeted delivery of therapeutic nucleic acids, CRISPR‐Cas systems, and other genetic ...
Tamanna Binte Huq   +4 more
wiley   +1 more source

Dual‐Functional Hafnium Oxide Nanoplatform Combining High‐Z Radiosensitization With Bcl‐2 Gene Silencing for Enhanced Cancer Radiotherapy

open access: yesAdvanced Healthcare Materials, EarlyView.
A dual‐functional hafnium oxide nanoplatform is developed for enhanced cancer radiotherapy. This innovative system combines the inherent radiosensitizing properties of high‐Z hafnium oxide with Bcl‐2 gene‐silencing capabilities. The nanoplatform demonstrated synergistic enhancement of radiotherapy efficacy through increased generation of reactive ...
Seungyong Shin   +12 more
wiley   +1 more source

Encapsulation of Small Extracellular Vesicles into Selectively Disassemblable Shells of PEGylated Metal‐Phenolic Networks

open access: yesAdvanced Healthcare Materials, EarlyView.
Small extracellular vesicles (sEVs) are encapsulated into protective shells composed of metal‐phenolic networks (MPNs) and secondary poly(ethylene glycol) layers. This surface modification approach enhances the storage stability of sEVs while maintaining their integrity and functionality. The shells can be selectively disassembled under mild conditions.
Chenyu Wang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy